Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T14:35:18.776Z Has data issue: false hasContentIssue false

Silicon Nanomembranes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article is based on the presentation given by Max G. Lagally (University of Wisconsin–Madison) as part of Symposium X: Frontiers of Materials Research on April 18, 2006, at the Materials Research Society Spring Meeting in San Francisco.

Structures with nanoscale dimensions are the essence of nanotechnology. Beginning with quantum dots and buckyballs, nanostructures now include nanotubes, rods, wires, and most recently, nanomembranes: very thin, large, freestanding or freefloating strain-engineered single crystals that can variously be made into tubes or other shapes, cut into millions of identical wires, or used as conformal sheets. This article provides a brief overview of the fabrication and properties of strained-silicon nanomembranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Celler, G.K. and Cristoloveanu, S., J. Appl. Phys. 93 (2003) p. 4955.CrossRefGoogle Scholar
2.Prinz, V. Ya., Seleznev, V. A., Gutakovsky, A.K., Chehovsky, A.V., Preobrazhenskii, V.V., Putyato, M.A., and Gavrilova, T.A., Physica E 6 (2000) p. 828.CrossRefGoogle Scholar
3.Schmidt, O.G. and Eberl, K., Nature 410 (2001) p. 168.CrossRefGoogle Scholar
4.Huang, M.H., Boone, C., Roberts, M.M., Savage, D.E., Lagally, M.G., Shaji, N., Qin, H., Blick, R., Nairn, J.A., and Liu, F., Adv. Mater. 17 (2005) p. 2860.CrossRefGoogle Scholar
5.Zhang, P.P., Tevaarwerk, E., Park, B.N., Savage, D.E., Celler, G.K., Knezevic, I., Evans, P.G., Eriksson, M.A., and Lagally, M.G., Nature 439 (2006) p. 703.CrossRefGoogle Scholar
6.Menard, E., Lee, K.J., Khang, D.-Y., Nuzzo, R.G., and Rogers, J.A., Appl. Phys. Lett. 84 (2004) p. 5398.CrossRefGoogle Scholar
7.Yuan, H.C., Ma, Z.Q., Roberts, M.M., Savage, D.E., and Lagally, M.G., J. Appl. Phys. 100 013708 (2006).CrossRefGoogle Scholar
8.Roberts, M.M., Klein, L.J., Savage, D.E., Friesen, M., Slinker, K.A., Celler, G.K., Eriksson, M.A., and Lagally, M.G., Nature Mater. 5 (2006) p. 388.CrossRefGoogle Scholar
9.Freund, L.B. and Suresh, S., Thin Film Materials: Stress, Defect Formation, and Surface Evolution (Cambridge University Press, Cambridge, UK, 2003).Google Scholar
10.Hoyt, J.L., Nayfeh, H.M., Eguchi, S., Aberg, I., Xia, G., Drake, T., Fitzgerald, E.A., and Antoniadis, D.A., in Tech. Digest. Int. Electron Dev. Meet. (IEEE, Piscataway, NJ, 2002) p. 23.CrossRefGoogle Scholar
11.Ismail, K., LeGoues, F.K., Saenger, K.L., Arafa, M., Chu, J.O., Mooney, P.M., and Meyerson, B.S.,Phys. Rev. Lett. 73 (1994) p. 3447.CrossRefGoogle Scholar
12.Yuan, H.-C., Roberts, M.M., Savage, D.E., Lagally, M.G., and Ma, Z.Q., 2005 Int. Semiconductor Dev. Res. Symp. (IEEE, Piscataway, NJ, 2005) p. 207.CrossRefGoogle Scholar
13.Northrup, J.E., Phys. Rev. B 47 (1993) p. 10032.CrossRefGoogle Scholar
14.Eriksson, M.A., Friesen, M., Coppersmith, S.N., Joynt, R., Klein, L.J., Slinker, K., Tahan, C., Mooney, P.M., Chu, J.O., and Koester, S.J., Quantum Inf. Process. 3 (2004) p. 133.CrossRefGoogle Scholar