Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-23T22:18:18.718Z Has data issue: false hasContentIssue false

Pyrite-type electrocatalysts for hydrogen evolution

Published online by Cambridge University Press:  13 July 2020

Wangyan Gou
Affiliation:
Taiyuan University of Technology, China; gouwangyan@gmail.com
Mingkai Zhang
Affiliation:
Xi'an Jiaotong University, China; zmk0102@stu.xjtu.edu.cn
Jian Wu
Affiliation:
Taiyuan University of Technology, China; 1290077637@qq.com
Qingchen Dong
Affiliation:
Taiyuan University of Technology, China; dongqingchen@tyut.edu.cn
Yongquan Qu
Affiliation:
Xi'an Jiaotong University, China; yongquan@mail.xjtu.edu.cn
Get access

Abstract

Electrochemical water splitting is one of the promising energy-conversion technologies to utilize intermittent renewable energy and produce hydrogen for clean energy. Pyrite-type transition-metal dichalcogenides have great potential to be applied for energy conversion. This article reviews recent progress in the performance of pyrite-type nanomaterials on the hydrogen evolution reaction, including an overview of crystal and electronic structure of pyrites and the principles of improving electrocatalytic activity and stability for S-based, Se-based, ternary, and other pyrites.

Type
Nanomaterials for Electrochemical Water Splitting
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bockris, J.O'M., Int. J. Hydrogen Energy 27, 731 (2002).CrossRefGoogle Scholar
Wang, J., Xu, F., Jin, H., Chen, Y., Wang, Y., Adv. Mater. 29, 1605838 (2017).Google Scholar
McCrory, C.C.L., Jung, S., Ferrer, I.M., Chatman, S.M., Peters, J.C., Jaramillo, T.F., J. Am. Chem. Soc. 137, 4347 (2015).CrossRefGoogle Scholar
Shima, S., Pilak, O., Vogt, S., Schick, M., Stagni, M.S., Meyer-Klaucke, W., Warkentin, E., Thauer, R.K., Ermler, U., Science 321, 572 (2008).CrossRefGoogle Scholar
Gao, M.R., Zheng, Y.R., Jiang, J., Yu, S.H., Acc. Chem. Res. 50, 2194 (2017).Google Scholar
Faber, M.S., Park, K., Cabán-Acevedo, M., Santra, P.K., Jin, S., J. Phys. Chem. Lett. 4, 1843 (2013).CrossRefGoogle Scholar
Craig, J.R., Vokes, F.M., Solberg, T.N., Miner. Deposita 34, 82 (1998).CrossRefGoogle Scholar
Wu, R., Zheng, Y.F., Zhang, X.G., Sun, Y.F., Xu, J.B., Jian, J.K., J. Cryst. Growth 266, 523 (2004).Google Scholar
Cabán-Acevedo, M., Stone, M.L., Schmidt, J.R., Thomas, J.G., Ding, Q., Chang, H.C., Tsai, M.L., He, J.H., Jin, S., Nat. Mater. 14, 1245 (2015).CrossRefGoogle Scholar
Kong, D., Cha, J.J., Wang, H., Lee, H.R., Cui, Y., Energy Environ. Sci. 6, 3553 (2013).Google Scholar
Ogawa, S., J. Appl. Phys. 50, 2308 (1979).CrossRefGoogle Scholar
Gao, M.R., Jiang, J., Yu, S.H., Small 8, 13 (2012).Google Scholar
Chen, P., Zhou, T., Chen, M., Tong, Y., Zhang, N., Peng, X., Chu, W., Wu, X., Wu, C., Xie, Y., ACS Catal. 7, 7405 (2017).Google Scholar
Liu, H., He, Q., Jiang, H., Lin, Y., Zhang, Y., Habib, M., Chen, S., Song, L., ACS Nano 11, 11574 (2017).Google Scholar
Wang, D.Y., Gong, M., Chou, H.L., Pan, C.J., Chen, H.A., Wu, Y., Lin, M.C., Guan, M., Yang, J., Chen, C.W., Wang, Y.L., Hwang, B.J., Chen, C.C., Dai, H., J. Am. Chem. Soc. 137, 1587 (2015).Google Scholar
Kuo, T.R., Chen, W.T., Liao, H.J., Yang, Y.H., Yen, H.C., Liao, T.W., Wen, C.Y., Lee, Y.C., Chen, C.C., Wang, D.Y., Small 13, 1603356 (2017).CrossRefGoogle Scholar
Tran, N.Q., Bui, V.Q., Le, H.M., Kawazoe, Y., Lee, H., Adv. Energy Mater. 8, 1702139 (2018).CrossRefGoogle Scholar
Chen, Y., Xu, S., Li, Y., Jacob, R.J., Kuang, Y., Liu, B., Wang, Y., Pastel, G., Salamanca-Riba, L.G., Zachariah, M.R., Hu, L., Adv. Energy Mater. 7, 1700482 (2017).Google Scholar
Kuang, P., Tong, T., Fan, K., Yu, J., ACS Catal. 7, 6179 (2017).CrossRefGoogle Scholar
Han, X., Wu, X., Deng, Y., Liu, J., Lu, J., Zhong, C., Hu, W., Adv. Energy Mater. 8, 1800935 (2018).CrossRefGoogle Scholar
Faber, M.S., Dziedzic, R., Lukowski, M.A., Kaiser, N.S., Ding, Q., Jin, S., J. Am. Chem. Soc. 136, 10053 (2014).CrossRefGoogle Scholar
Li, J., Xia, Z., Zhang, M., Zhang, S., Li, J., Ma, Y., Qu, Y., J. Mater. Chem. A 7, 17775 (2019).Google Scholar
Kong, D., Wang, H., Lu, Z., Cui, Y., J. Am. Chem. Soc. 136, 4897 (2014).Google Scholar
Wang, F., Li, Y., Shifa, T.A., Liu, K., Wang, F., Wang, Z., Xu, P., Wang, Q., He, J., Angew. Chem. Int. Ed. 55, 6919 (2016).Google Scholar
Zhou, H., Wang, Y., He, R., Yu, F., Sun, J., Wang, F., Lan, Y., Ren, Z., Chen, S., Nano Energy 20, 29 (2016).CrossRefGoogle Scholar
Wang, B., Wang, Z., Wang, X., Zheng, B., Zhang, W., Chen, Y., J. Mater. Chem. A 6, 12701 (2018).Google Scholar
Li, H., Chen, S., Lin, H., Xu, X., Yang, H., Song, L., Wang, X., Small 13, 1701487 (2017).Google ScholarPubMed
Liu, Y., Hua, X., Xiao, C., Zhou, T., Huang, P., Guo, Z., Pan, B., Xie, Y., J. Am. Chem. Soc. 138, 5087 (2016).Google Scholar
Li, Y., Polakovic, T., Curtis, J., Shumlas, S.L., Chatterjee, S., Intikhab, S., Chareev, D.A., Volkova, O.S., Vasiliev, A.N., Karapetrov, G., Snyder, J., J. Catal. 366, 50 (2018).CrossRefGoogle Scholar
Peng, Z., Jia, D., Al-Enizi, A.M., Elzatahry, A.A., Zheng, G., Adv. Energy Mater. 5, 1402031 (2015).Google Scholar
Dutta, B., Wu, Y., Chen, J., Wang, J., He, J., Sharafeldin, M., Kerns, P., Jin, L., Dongare, A.M., Rusling, J., Suib, S.L., ACS Catal. 9, 456 (2019).Google Scholar
Jiang, P., Liu, Q., Sun, X., Nanoscale 6, 13440 (2014).Google Scholar
Liu, K., Wang, F., He, P., Shifa, T.A., Wang, Z., Cheng, Z., Zhan, X., He, J., Adv. Energy Mater. 8, 1703290 (2018).Google Scholar
Li, J., Xia, Z., Zhou, X., Qin, Y., Ma, Y., Qu, Y., Nano Res. 10, 814 (2017).Google Scholar
Liu, W., Hu, E., Jiang, H., Xiang, Y., Weng, Z., Li, M., Fan, Q., Yu, X., Altman, E.I., Wang, H., Nat. Commun. 7, 10771 (2016).Google Scholar