Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-18T15:23:54.828Z Has data issue: false hasContentIssue false

Probing nanoscale structure and strain by dark-field x-ray microscopy

Published online by Cambridge University Press:  09 April 2020

Can Yildirim
Affiliation:
CEA-Leti, France; canyildirim.mete@gmail.com
Phil Cook
Affiliation:
Institute for Materials Science and Physics, University of Natural Resources and Life Sciences, Austria; phil.cook@boku.ac.at
Carsten Detlefs
Affiliation:
European Synchrotron Radiation Facility, France; detlefs@esrf.fr
Hugh Simons
Affiliation:
Department of Physics, Technical University of Denmark, Denmark; husimo@fysik.dtu.dk
Henning Friis Poulsen
Affiliation:
Department of Physics, Technical University of Denmark, Denmark; hfpo@fysik.dtu.dk
Get access

Abstract

Dark-field x-ray microscopy is intended for the acquisition of three -dimensional (3D) movies of the nanostructure (grains, domains, and dislocations) and the associated local strain within bulk materials. It is analogous to dark-field electron microscopy in that an objective lens magnifies diffracting features of the sample. The use of high-energy synchrotron x-rays, however, means that these microstructural features can be large and deeply embedded. The spatial and angular resolution is on the order of 100 nm and 0.001°, respectively, and full maps can be recorded in seconds to minutes. Four applications of the technique are presented—domain switching in ferroelectrics, processing of metals, microstructural characterization of biominerals, and visualization of dislocations. The ability to directly characterize complex, multiscale phenomena in situ—and in 3D—is a key step toward formulating and validating multiscale models that account for the entire heterogeneity of materials.

Type
Nanoscale Tomography Using X-rays and Electrons
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, H.H., Schmidt, S., Poulsen, H.F., Godfrey, A., Liu, Z.Q., Sharon, J., Huang, X., Science 332, 833 (2011).10.1126/science.1202202CrossRefGoogle Scholar
Midgley, P.A., Dunin-Borkowski, R.E., Nat. Mater. 8, 271 (2009).10.1038/nmat2406CrossRefGoogle Scholar
Zaafarani, N., Raabe, D., Singh, R.N., Roters, F., Zaefferer, S., Acta Mater . 54, 1863 (2006).10.1016/j.actamat.2005.12.014CrossRefGoogle Scholar
Uchic, M.D., Groeber, M.A., Dimiduk, D.M., Simmons, J.P., Scr. Mater. 55, 23 (2006).10.1016/j.scriptamat.2006.02.039CrossRefGoogle Scholar
Echlin, M.P., Mottura, A., Torbet, C.J., Pollock, T.M., Rev. Sci. Instrum. 83, 023701 (2012).10.1063/1.3680111CrossRefGoogle Scholar
Larson, B.C., Yang, Wenge, Ice, G.E., Budai, J.D., Tischler, J.Z., Nature 415, 887 (2002).10.1038/415887aCrossRefGoogle Scholar
Hofmann, F., Abbey, B., Liu, W., Xu, R., Usher, B.F., Balaur, E., Liu, Y, Nat. Commun. 4, 2774 (2014).10.1038/ncomms3774CrossRefGoogle Scholar
Schroer, C.G., Kurapova, O., Patommel, J., Boye, P., Feldkamp, J., Lengeler, B., Burghammer, M., Riekel, C., Vince, L., van der Hart, A., Küchler, M., Appl. Phys. Lett. 87, 124103 (2005).10.1063/1.2053350CrossRefGoogle Scholar
Mimura, H., Handa, S., Kimura, T., Yumoto, H., Yamakawa, D., Yokoyama, H., Matsuyama, S., Inagaki, K., Yamamura, K., Sano, Y., Tamakaku, K., Nishino, Y., Yabashi, M., Ishikawa, T., Yamauchi, K., Nat. Phys. 6, 122 (2010).10.1038/nphys1457CrossRefGoogle Scholar
Bleuet, P., Welcomme, E., Dooryhee, E., Susini, J., Hodeau, J., Walter, P., Nat. Mater. 7, 468 (2008).10.1038/nmat2168CrossRefGoogle Scholar
Xu, C., Zhang, Y., Godfrey, A., Wu, G., Liu, W., Tischler, J.Z., Liu, Q., Jensen, D.J., Sci. Rep. 7, 42508 (2017).10.1038/srep42508CrossRefGoogle Scholar
Pfeifer, M.A., Williams, G.J., Vartanyants, I.A., Harder, R., Robinson, I.K., Nature 442, 63 (2006).10.1038/nature04867CrossRefGoogle Scholar
Chamard, V., Stangl, J., Carbone, G., Diaz, A., Chen, G., Alfonso, C., Mocuta, C., Metzger, T., Phys. Rev. Lett. 104, 165501 (2010).10.1103/PhysRevLett.104.165501CrossRefGoogle Scholar
Yau, A., Cha, W., Kanan, M., Stephenson, G., Ulvestad, A., Science 356, 739 (2017).10.1126/science.aam6168CrossRefGoogle Scholar
Simons, H., King, A., Ludwig, W., Detlefs, C., Pantleon, W., Schmidt, S., Stöhr, F., Snigireva, I., Snigirev, A., Poulsen, H.F., Nat. Commun. 6, 6098 (2015).10.1038/ncomms7098CrossRefGoogle Scholar
Simons, H., Jakobsen, A.C., Ahl, S.R., Detlefs, C., Poulsen, H.F., MRS Bull . 41, 454 (2016).10.1557/mrs.2016.114CrossRefGoogle Scholar
Poulsen, H.F., Nielsen, S.F., Lauridsen, E.M., Schmidt, S., Suter, R.M., Lienert, U., Margulies, L., Lorentzen, T., Juul Jensen, D., J. Appl. Crystallogr. 34, 751 (2001).10.1107/S0021889801014273CrossRefGoogle Scholar
Schmidt, S., Nielsen, S.F., Gundlach, C., Margulies, L., Huang, X., Jensen, D.J., Science 305, 229 (2004).10.1126/science.1098627CrossRefGoogle Scholar
Hefferan, C.M., Lind, J., Li, S.F., Lienert, U., Rollett, A.D., Suter, R.M., Acta Mater. 60, 4311 (2012).10.1016/j.actamat.2012.04.020CrossRefGoogle Scholar
Ludwig, W., Reischig, P., King, A., Herbig, M., Lauridsen, E.M., Johnson, G., Marrow, T.J., Buffière, J.-Y., Rev. Sci. Instrum. 80, 033905 (2009).10.1063/1.3100200CrossRefGoogle Scholar
Vigano, N., Nervo, L., Valzania, L., Singh, G., Preuss, M., Batenburg, J.K., Ludwig, W., J. Appl. Crystallogr. 49, 544 (2016).10.1107/S1600576716002302CrossRefGoogle Scholar
Poulsen, H.F., Jakobsen, A.C., Simons, H., Ahl, S.R., Cook, P.K., Detlefs, C., J. Appl. Crystallogr. 50, 1441 (2017).10.1107/S1600576717011037CrossRefGoogle Scholar
Kutsal, M., Bernard, P., Berruyer, G., Cook, P.K., Hio, R., Jakobsen, A.C., Ludwig, W., Ormstrup, J., Roth, T., Simons, H., Smets, K., Sierra, J.X., Wade, J., Wattecamps, P., Yildirim, C., Poulsen, H.F., Detlefs, C., IOP Conf. Ser. Mater. Sci. Eng. 580, 012007 (2019).10.1088/1757-899X/580/1/012007CrossRefGoogle Scholar
Tran Thi, T.N., Morse, J., Caliste, D., Fernandez, B., Eon, D., Härtwig, J., Barbay, C., Mer-Calfati, C., Tranchant, N., Arnault, J.C., Lafford, T.A., Baruche, J., J. Appl. Crystallogr. 50, 561 (2017).10.1107/S1600576717003831CrossRefGoogle Scholar
Ludwig, W., Cloetens, P., Härtwig, J., Baruchel, J., Hamelin, B., Bastie, P., J. Appl. Crystallogr. 34, 602 (2001).10.1107/S002188980101086XCrossRefGoogle Scholar
Snigirev, A., Kohn, V., Snigireva, I., Lengeler, B., Nature 384, 49 (1996).10.1038/384049a0CrossRefGoogle Scholar
Simons, H., Ahl, S.R., Poulsen, H.F., Detlefs, C., J. Synchrotron Radiat. 24, 392 (2017).10.1107/S160057751602049XCrossRefGoogle Scholar
Poulsen, H.F., Cook, P.K., Leemreize, H., Pedersen, A.F., Yildirim, C., Kutsal, M., Jakobsen, A.C., Trujillo, J.X., Ormstrup, J., Detlefs, C., J. Appl. Crystallogr. 51, 1428 (2018).10.1107/S1600576718011378CrossRefGoogle Scholar
Jakobsen, A.C., Simons, H., Ludwig, W., Yildirim, C., Leemreize, H., Porz, L., Detlefs, C., Poulsen, H.F., J. Appl. Crystallogr. 52, 122 (2019).10.1107/S1600576718017302CrossRefGoogle Scholar
Leemreize, H., Knudsen, E.B., Birk, J.O., Strobl, M., Detlefs, C., Poulsen, H.F., J. Appl. Crystallogr. 52, 1299 (2019).10.1107/S1600576719012858CrossRefGoogle Scholar
Sierra, J.X., Poulsen, H.F., Jørgensen, P., Detlefs, C., Cook, P., Simons, H., Jakobsen, A.C., Bowen, J., J. Power Sources 413, 351 (2019).10.1016/j.jpowsour.2018.12.057CrossRefGoogle Scholar
Bucsek, A., Seiner, H., Simons, H., Yildirim, C., Cook, P., Chumlyakov, Y., Detlefs, C., Stebner, A.P., Acta Mater . 179, 273 (2019).10.1016/j.actamat.2019.08.036CrossRefGoogle Scholar
Simons, H., Haugen, A.B., Jakobsen, A.C., Schmidt, S., Stöhr, F., Majkut, M., Detlefs, C., Daniels, J.E., Damjanovic, D., Poulsen, H.F., Nat. Mater. 17, 814 (2018).10.1038/s41563-018-0116-3CrossRefGoogle Scholar
Pantleon, W., Scr. Mater. 58, 994 (2008).10.1016/j.scriptamat.2008.01.050CrossRefGoogle Scholar
Mavrikakis, N., Detlefs, C., Cook, P., Kutsal, M., Campos, A., Gauvin, M., Calvillo, P., Saikaly, W., Hubert, R., Poulsen, H., Vaugeois, A., Zapolsky, H., Mangelinck, D., Dumont, M., Yildirim, C., Acta Mater . 174, 92 (2019).10.1016/j.actamat.2019.05.021CrossRefGoogle Scholar
Terentyev, D., Anento, N., Serra, A., Jansson, V., Khater, H., Bonny, G., J. Nucl. Mater. 408, 272 (2011).10.1016/j.jnucmat.2010.11.053CrossRefGoogle Scholar
Ahl, S.R., Simons, H., Detlefs, C., Jensen, D.J., Poulsen, H.F., Acta Mater. 185, 142 (2020).10.1016/j.actamat.2019.10.042CrossRefGoogle Scholar
Simons, H., Jakobsen, A.C., Ahl, S.R., Poulsen, H.F., Pantleon, W., Chu, Y.-H., Detlefs, C., Valanoor, N., Nano Lett. 19, 1445 (2019).10.1021/acs.nanolett.8b03839CrossRefGoogle Scholar
Cook, P., Simons, H., Jakobsen, A.C., Yildirim, C., Poulsen, H.F., Detlefs, C., Microsc. Microanal. Microstruct. 24 (S2), 90 (2018).10.1017/S1431927618012837CrossRefGoogle Scholar
Schoeppler, V., Reich, E., Vacelet, J., Rosenthal, M., Pacureanu, A., Rack, A., Zaslansky, P., Zlotoyabko, E., Zlotnikov, I., Sci. Adv. 3, eaa02047 (2017).10.1126/sciadv.aao2047CrossRefGoogle Scholar
Murray, K.T., Pedersen, A.F., Mohacsi, I., Detlefs, C., Morgan, A.J., Prasciolu, M., Yildirim, C., Simons, H., Jakobsen, A.C., Chapman, H.N., Poulsen, H.F., Bajt, S., Opt. Express 27, 7120 (2019).10.1364/OE.27.007120CrossRefGoogle Scholar
Falch, K., Detlefs, C., DiMichiel, M., Snigireva, I., Snigirev, A., Mathiesen, R., Appl. Phys. Lett. 109, 054103 (2016).CrossRefGoogle Scholar
Falch, K.V., Lyubomirskij, M., Casari, D., Detlefs, C., Snigirev, A., Snigireva, I., Detlefs, C., Di Michiel, M., Lyatun, I., Mathiesen, R.H., Ultramicroscopy 184, 267 (2018).CrossRefGoogle Scholar
Bosak, A., Snigireva, I., Napolskii, K.S., Snigirev, A., Adv. Mater. 22, 3256 (2010).CrossRefGoogle Scholar
Pedersen, A.F., Chamard, V., Poulsen, H.F., Opt. Express 26, 23411 (2018).CrossRefGoogle Scholar
Pedersen, A.F., Chamard, V., Detlefs, C., Zhou, T., Carbone, D., Poulsen, H.F., Phys. Rev. Res. (Forthcoming).Google Scholar