Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T09:22:15.041Z Has data issue: false hasContentIssue false

Oxygen Stoichiometry and the High Tc Superconducting Oxides

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Oxide compounds have been extensively studied through the years because they exhibit a broad spectrum of electrical, magnetic, and optical properties providing both scientific and technological interest. Most oxides are insulators, but a few of them (e.g., LiTi2O4 or BaPb1−x BixO3 show metallic conductivity and even superconductivity at low temperatures. The discovery of superconductivity at 35 K by Bednorz and Müller in the cuprate La-Ba-Cu-O system prompted the search for other high Tc compounds among this oxide family. Superconductivity above liquid nitrogen was then rapidly achieved with the Y-Ba-Cu-O system (Tc=90 K) and subsequently, with the Bi-Sr-Ca-Bu-O and Tl-Ba-Ca-Cu-O systems, Tc was raised to 110 K and then 125 K.

A common feature of these new high Tc cuprates is that they belong to the large family of materials, termed perovskites, which have been studied over the years because of their ability to absorb or lose oxygen reversibly (i.e., for their nonstoichiometry in oxygen). It had been previously established in the field of superconductivity that Tc is extremely sensitive to compositional stoichiometry.

Type
High Tc Superconductors
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnston, D.C., Prakash, H., Zachariasen, W.H., and Viswanathan, R., Mater. Res. Bull. 8 (1973) p. 777.CrossRefGoogle Scholar
2.Sleight, A.W., Gillson, J.L., Biersled, F.E., Solid State Commun. 17 (1975) p. 27.CrossRefGoogle Scholar
3.Bednorz, J.G. and Muller, K.A., Z. Phys. B 64 (1986) p. 189.CrossRefGoogle Scholar
4.Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., and Chu, C.W., Phys. Rev. Lett. 58 (1987) p. 908.CrossRefGoogle Scholar
5.Maeda, H., Tanaka, Y., Fukutumi, M., and Asano, T., Jap. J. Appl. Phys. 27 (1988) p. L209.CrossRefGoogle Scholar
6.Sheng, Z.Z. and Hermann, A.M., Nature 332 (1988) p. 55; ibid. 322 (1988) p. 138.CrossRefGoogle Scholar
7.Rao, C.N.R., Ganguly, P., Hegde, M.S., and Sharma, D.D., J. Amer. Chem. Soc. 109 (1987) p. 6893.CrossRefGoogle Scholar
8.Demazeau, G., Marty, J.L., Buffat, B., Dance, J.M., Pouchard, M., Dordor, P., and Chevalier, B., Mater. Res. Bull. 17 (1982) p. 37.CrossRefGoogle Scholar
9.Raveau, B. (private communication).Google Scholar
10.Kishio, K., Kitazawa, K., Kanbe, S., Yasuda, I., Sugil, N., Takagi, H., Uchida, S., Fueki, K., and Tanaka, S., Chem. Lett. (Japan, 1987) p. 429.Google Scholar
11.Tarascon, J-M., Greene, L.H., McKinnon, W.R., Hull, G.W., and Geballe, T.H., Science 235 (1987) p. 1373.CrossRefGoogle Scholar
12.Bagley, B.G., Greene, L.H., Tarascon, J-M., and Hull, G.W., Applied Phys. Lett. 51 (1987) p. 622.CrossRefGoogle Scholar
13.Beille, J., Cabanel, R., Chaillout, C., Chevalier, B., Demazeau, G., Deslandes, F., Elourneau, J., Lejay, P., Michel, C., Provost, J., Raveau, B., Sulpice, A., Tholence, J., and Tournier, R., C.R. Acad. Sci. Paris 18 (1987) p. 304.Google Scholar
14.Tarascon, J-M., Barboux, P., Bagley, B.G., Greene, L.H., McKinnon, W.R., and Hull, G.W., in Chemistry of High Temperature Superconductors, edited by Nelson, D.L., Whittingham, M.S., and George, T.F. (American Chemical Society, Washington, DC, 1987), p. 198.CrossRefGoogle Scholar
15.LePage, Y., McKinnon, W.R., Tarascon, J-M., Greene, L.H., Hull, G.W., and Hwang, D.M., Phys. Rev. Lett. B 35 (1987) p. 7245.Google Scholar
16.Tarascon, J-M., McKinnon, W.R., Greene, L.H., Hull, G.W., and Vogel, E.M., Phys. Rev. B 36 (1987) p. 226.CrossRefGoogle Scholar
17.Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Kleefisch, M.S., Phys. Rev. B 36 (1987) p. 3608.CrossRefGoogle Scholar
18.Venkatesan, T. (private communication).Google Scholar
19.Tarascon, J-M., McKinnon, W.R., Greene, L.H., Hull, G.W., Bagley, B.G., Vogel, E.M., and LePage, Y., in High Temperature Supercon 11, Pittsburgh, PA, 1987) p.65.Google Scholar
20.Cava, R.J.et al., Nature 329 (1987) p. 423.CrossRefGoogle Scholar
21.Cava, R.J.et al., Physica C 153–155 (1988) p. 560.CrossRefGoogle Scholar
22.Alario-Franco, M. and Chaillout, C., Physica C 153–155 (1988) p. 956.CrossRefGoogle Scholar
23.Tarascon, J-M., Barboux, P., Miceli, P., Greene, L.H., Hull, G.W., Eibschutz, M., and Sunshine, S., Phys. Rev. B 13 (1988) p. 7458.CrossRefGoogle Scholar
24.Xiao, G., Cieplak, M.Z., Musser, D.Gavrin, A., Streitz, F.H., Chien, C.L., Rhyne, J.H., and Gotaas, J.A., Nature 332 (1988) p. 238.CrossRefGoogle Scholar
25.Cava, R.J., Batlogg, B., Fleming, R.M., Sunshine, S.A., Ramirez, A., Rietman, E.A., Zahurak, S.M., and Dover, R.B. van, Phys. Rev. B 37 (1988) p. 5912.CrossRefGoogle Scholar
26.Miceli, P.F., Tarascon, J-M., Greene, L.H., Barboux, P., Rotella, F.J., and Jorgenson, J.D., Phys. Rev. B 37 (1988) p. 5932.CrossRefGoogle Scholar
27.Tarascon, J-M., McKinnon, W.R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L.H., Hull, G.W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38(1988)p. 8885.CrossRefGoogle Scholar
28.Tarascon, J-M., LePage, Y., Barboux, P., Bagley, B.G., Greene, L.H., McKinnon, W.R., Hull, G.W., Giroud, M., and Hwang, D.M., Phys. Rev. B 37 (1988) p. 9382.CrossRefGoogle Scholar
29.Tarascon, J-M., Barboux, P., Hull, G., Ramesh, R., Greene, L.H., Giroud, M., Hedge, M., and McKinnon, W.R., Phys. Rev. B (submitted).Google Scholar