Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-17T06:13:43.977Z Has data issue: false hasContentIssue false

Organic-Based Magnets: Opportunities in Photoinduced Magnetism, Spintronics, Fractal Magnetism, and Beyond

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article is based on a presentation on organic-based magnets given as part of Symposium X—Frontiers of Materials Research on December 4, 2002, at the 2002 Materials Research Society Fall Meeting in Boston. The advent of organic-based magnets opened the opportunity for tuning magnetic properties by molecular design and the discovery of new phenomena that rely on the internal structure of the molecules that make up these magnets. In the past 18 years, numerous classes of organic-based ferromagnets, ferrimagnets, and spin glasses (spins essentially frozen in place without long-range order) have been reported. These materials have magnetic ordering temperatures ranging from <1 K to above room temperature and demonstrate many of the magnetic properties associated with conventional magnets. This article concentrates on new phenomena that are unique to organic-based magnets. Three of these effects—“high-temperature” light-induced magnetism, spin-polarized magnetic organic semiconductors with the potential for spintronics, and the development of fractal magnetic order—are discussed to illustrate the richness of opportunity in organic-based magnets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Miller, J.S., Calabrese, J.C., Epstein, A.J., Bigelow, R.W., Zhang, J.H., and Reiff, W.M., J. Chem. Soc., Chem. Commun. (1986) p. 1026;Google Scholar
Chittipeddi, S., Cromack, K.R., Miller, J.S., and Epstein, A.J., Phys. Rev. Lett. 58 (1987) p. 2695.Google Scholar
2.Miller, J.S. and Epstein, A.J., MRS Bull. 25 (11) (2000) p. 21.Google Scholar
3.Epstein, A.J., MRS Bull. 25 (11) (2000) p. 33.Google Scholar
4.Pejakovic, D.A., Manson, J.L., Miller, J.S., and Epstein, A.J., Phys. Rev. Lett. 88 057202–1 (2002).CrossRefGoogle Scholar
5.Prigodin, V.N., Raju, N.P., Pokhodnya, K.I., Miller, J.S., and Epstein, A.J., Adv. Mater. 14 (2002) p. 1230.Google Scholar
6.Etzkorn, S.J., Hibbs, W., Miller, J.S., and Epstein, A.J., Phys. Rev. Lett. 89 207201–1 (2002).CrossRefGoogle Scholar
7.Zheludev, A., Grand, A., Ressouche, E., Schweizer, J., Morin, B.G., Epstein, A.J., Dixon, D.A., and Miller, J.S., J. Am. Chem. Soc. 116 (1994) p. 7243.CrossRefGoogle Scholar
8.Zheludev, A., Ressouche, E., Schweizer, J., Turek, P., Wan, M., and Wang, H., J. Magn. Magn. Mater. 140–144 (1995) p. 1439.Google Scholar
9.Miller, J.S. and Epstein, A.J., J. Am. Chem. Soc. 109 (1987) p. 3850.Google Scholar
10.Miller, J.S., Epstein, A.J., and Reiff, W.M., Science 240 (1988) p. 40.CrossRefGoogle Scholar
11.Wynn, C.M., Girtu, M., Brinckerhoff, W.B., Sugiura, K.-I., Miller, J.S., and Epstein, A.J., Chem. Mater. 9 (1997) p. 2156.CrossRefGoogle Scholar
12.Takahashi, M., Turek, P., Nakazawa, Y., Tamura, M., Nozawa, K., Shiomi, D., Ishikawa, M., and Kinoshita, M., Phys. Rev. Lett. 67 (1991) p. 746; erratum, 69 (1992) p. 1290.Google Scholar
13.Chiarelli, R., Novak, M.A., Rassat, A., and Tholence, J.L., Nature 363 (1993) p. 147.CrossRefGoogle Scholar
14.Allemand, P., Khemani, K., Koch, A., Wudl, F., Holczer, K., Donovan, S., Gruner, G., and Thompson, J.D., Science 253 (1991) p. 301.CrossRefGoogle Scholar
15.Banister, A.J., Bricklebank, N., Lavender, I., Rawson, J.M., Gregory, C.I., Tanner, B.K., Clegg, W., Elsegood, M.R.J., and Palacio, F., Angew. Chem., Int. Ed. Engl. 35 (1996) p. 2533.Google Scholar
16.Manriquez, J.M., Yee, G.T., McLean, R.S., Epstein, A.J., and Miller, J.S., Science 252 (1991) p. 1415.CrossRefGoogle Scholar
17.Pokhodnya, K.I., Epstein, A.J., and Miller, J.S., Adv. Mater. 12 (2000) p. 410.Google Scholar
18.Ferlay, S., Mallah, T., Ouahes, R., Veillet, P., and Verdeguer, M., Nature 378 (1995) p. 701.CrossRefGoogle Scholar
19.Hatlevik, O., Buschmann, W.E., Zhang, J., Manson, J.L., and Miller, J.S., Adv. Mater. 11 (1999) p. 914.3.0.CO;2-T>CrossRefGoogle Scholar
20.Holmes, S.D. and Girolami, G., J. Am. Chem. Soc. 121 (1999) p. 5593.Google Scholar
21.Kmety, C.R., Manson, J.L., Huang, Q., Lynn, J.W., Erwin, R.W., Miller, J.S., and Epstein, A.J., Phys. Rev. B 60 (1999) p. 60.CrossRefGoogle Scholar
22.Kmety, C.R., Huang, Q., Lynn, J.W., Erwin, R.W., Manson, J.L., McCall, S., Crow, J.E., Stevenson, K.L., Miller, J.S., and Epstein, A.J., Phys. Rev. B 62 (2000) p. 5576.CrossRefGoogle Scholar
23.Manson, J.L., Kmety, C.R., Palacio, F., Epstein, A.J., and Miller, J.S., Chem. Mater. 13 (2001) p. 1068.Google Scholar
24.Kmety, C.R., Manson, J.L., McCall, S., Crow, J.E., Stevenson, K.L., and Epstein, A.J., J. Magn. Magn. Mater. 248 (2002) p. 52.CrossRefGoogle Scholar
25.Narayan, K.S., Morin, B.G., Miller, J.S., and Epstein, A.J., Phys. Rev. B 46 (1992) p. 6195.Google Scholar
26.Girtu, M.A., Wynn, C.M., Fujita, W., Awaga, K., and Epstein, A.J., Phys. Rev. B 57 (1998) p. 11058.Google Scholar
27.Girtu, M., Wynn, C., Fujita, W., Awaga, K., and Epstein, A.J., Phys. Rev. B 61 (2000) p. 4117.Google Scholar
28.Friedman, J.R., Sarachik, M.P., Tejada, J., and Ziolo, R., Phys. Rev. Lett. 76 (1996) p. 3830.CrossRefGoogle Scholar
29.Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R., and Barbara, B., Nature 383 (1996) p. 145;Google Scholar
Aubin, S.M.J., Sun, Z., Pardi, L., Folting, K., Brunel, L.-C., Rheingold, A.L., Christou, G., and Hendrickson, D.N., Inorg. Chem. 38 (1999) p. 5329;Google Scholar
Kent, A.D., Zhong, Y., Bokacheva, L., Ruiz, D., Hendrickson, D.N., and Sarachik, M.P., J. Appl. Phys. 87 (2000) p. 5493.Google Scholar
30.Coronado, E., Galan-Mascaros, J.R., Gomez-Garcia, C.J., and Laukhin, V., Nature 408 (2000) p. 447.Google Scholar
31.Landee, C.P., Turnbull, M.M., Galeriu, C., Giantsidis, J., and Woodward, F.M., Phys. Rev. B 63 100402–1 (2001).Google Scholar
32.Glauber, R.J., J. Math. Phys. 4 (1963) p. 294.Google Scholar
33.Caneschi, A., Gatteschi, D., Lalioti, N., Sangregorio, C., Sessoli, R., Venturi, G., Vindigni, A., Rettori, A., Pini, M.G., and Novak, M.A., Angew. Chem., Int. Ed. Engl. 40 (2001) p. 1760.3.0.CO;2-U>CrossRefGoogle Scholar
34.Mito, M., Shindo, N., Tajiri, T., Deguchi, H., Takagi, S., Miyasaka, H., Yamashita, M., Clerac, R., and Coulon, C., J. Magn. Magn. Mater. (2003) in press.Google Scholar
35.Fujita, W. and Awaga, K., Science 286 (1999) p. 261.CrossRefGoogle Scholar
36.Fujita, W. and Awaga, K., Synth. Met. 137 (2003) p. 1263.Google Scholar
37.Sato, O., Iyoda, T., Fujishima, A., and Hashimoto, K., Science 272 (1996) p. 704.Google Scholar
38.Ohkoshi, S., Yorozu, S., Sato, O., Iyoda, T., Fujishima, A., and Hashimoto, K., Appl. Phys. Lett. 70 (1997) p. 1040.Google Scholar
39.Sato, O., Einaga, Y., Fujishima, A., and Hashimoto, K., Inorg. Chem. 38 (1999) p. 4405.Google Scholar
40.Goujon, A., Roubeau, O., Varret, F., Dolbecq, A., Bleuzen, A., and Verdaguer, M., Eur. Phys. J. B 14 (2000) p. 115.CrossRefGoogle Scholar
41.Pejakovic, D.A., Manson, J.L., Miller, J.S., and Epstein, A.J., Phys. Rev. Lett. 85 (2000) p. 1994.CrossRefGoogle Scholar
42.Kawamoto, T., Asai, Y., and Abe, S., Phys. Rev. Lett. 86 000348 (2001); Phys. Rev. B 60 (1999) p. 12990.Google Scholar
43.Tokoro, H., Ohkoshi, S.-I., and Hashimoto, K., Appl. Phys. Lett. 82 (2003) p. 1245.CrossRefGoogle Scholar
44.Ogawa, Y., Koshihara, S., Koshino, K., Ogawa, T., Urano, C., and Takagi, H., Phys. Rev. Lett. 84 (2000) p. 3181.CrossRefGoogle Scholar
45.Koshihara, S., Oiwa, A., Hirasawa, M., Katsumoto, S., Iye, Y., Urano, C., Takagi, H., and Munekata, H., Phys. Rev. Lett. 78 (1997) p. 4617.Google Scholar
46.Matsuda, K., Machida, A., Moritomo, Y., and Nakamura, A., Phys. Rev. B 58 (1998) p. R4203.CrossRefGoogle Scholar
47.Muraoka, Y., Tabata, H., and Kawai, T., Appl. Phys. Lett. 77 (2000) p. 4016.Google Scholar
48.Pejakovic, D.A., Kitamura, C., Miller, J.S., and Epstein, A.J., J. Appl. Phys. 91 (2002) p. 7176.Google Scholar
49.Zhang, J., Ensling, J., Ksenofontov, V., Gütlich, P., Epstein, A.J., and Miller, J.S., Angew. Chem., Int. Ed. Engl. 37 (1998) p. 657.Google Scholar
50.Wynn, C.M., Girtu, M.A., Zhang, J., Miller, J.S., and Epstein, A.J., Phys. Rev. B 58 (1998) p. 8508.Google Scholar
51. The time needed to reach saturation depends on the sample thickness. In the magnetic measurements, thicker samples were used in order to achieve good sensitivity in the entire temperature region studied, which required very long illumination. In contrast, in optical studies, saturation of the photoinduced effect is reached in several minutes.Google Scholar
52.Dixon, D.A. and Miller, J.S., J. Am. Chem. Soc. 109 (1987) p. 3656.Google Scholar
53.Wolf, S.A., J. Supercond. 13 (2000) p. 195.CrossRefGoogle Scholar
54.Ohno, H. and Matsukura, F., Solid State Commun. 117 (2001) p. 179.Google Scholar
55.Kohlman, R.S. and Epstein, A.J., in Handbook of Conducting Polymers, edited by Skotheim, T.A., Elsenbaumer, R.L., and Reynolds, J.R. (Marcel Dekker, New York, 1998) p. 85.Google Scholar
56.Blatchford, J.W. and Epstein, A.J., Am. J. Phys. 64 (1996) p. 120.CrossRefGoogle Scholar
57. For example, see Proc. Int. Conf. on Science and Technology of Synthetic Metals, edited by C.Q. Wu, Y. Cao, X. Sun, and D.B. Zhu, in Synth. Met. 133–137 (2003) pp. 11600.Google Scholar
58. For example, see Wang, Y.Z. and Epstein, A.J., Accts. Chem. Res. 32 (1999) p. 217.Google Scholar
59. For example, see Delucia, F.C. Jr., Gustafson, T.L., Wang, Y.Z., Wang, D.K., and Epstein, A.J., Phys. Rev. B 65 235204 (2002).Google Scholar
60.Epstein, A.J., Hsu, F.-C., Chiou, N.-R., and Prigodin, V.N., Curr. Appl. Phys. 2 (2002) p. 339.Google Scholar
61.Zhou, P., Morin, B., Epstein, A.J., and Miller, J.S., Phys. Rev. B 48 (1993) p. 1325.CrossRefGoogle Scholar
62.Zhou, P., Long, S.M., Miller, J.S., and Epstein, A.J., Phys. Lett. A 181 (1993) p. 71.Google Scholar
63.Pokhodnya, K.I., Pejakovic, D.A., Epstein, A.J., and Miller, J.S., Phys. Rev. B 63 174408–1 (2001).Google Scholar
64.Raju, N.P., Savrin, T., Prigodin, V.N., Pokhodnya, K.I., Miller, J.S., and Epstein, A.J., J. Appl. Phys. 93 (2003) p. 6799.Google Scholar
65.Onoda, S. and Imada, M., J. Phys. Soc. Jpn. 70 (2001) p. 3398.CrossRefGoogle Scholar
66.Miller, J.S., Calabrese, J.C., McLean, R.S., and Epstein, A.J., Adv. Mater. 4 (1992) p. 498.CrossRefGoogle Scholar
67.Hibbs, W., Rittenberg, D.K., Sugiura, K.-I., Burkhart, B.M., Sundaralingam, M., Epstein, A.J., and Miller, J.S., Inorg. Chem. 40 (2001) p. 1915.Google Scholar
68.Brinckerhoff, W.B., Morin, B.G., Brandon, E.J., Miller, J.S., and Epstein, A.J., J. Appl. Phys. 79 (1996) p. 6147.CrossRefGoogle Scholar
69.Wynn, C.M., Girtu, M.A., Sugiura, K.-I., Brandon, E.J., Manson, J.L., Miller, J.S., and Epstein, A.J., Synth. Met. 85 (1997) p. 1695.CrossRefGoogle Scholar
70.Girtu, M.A., Wynn, C.M., Sugiura, K.-I., Miller, J.S., and Epstein, A.J., J. Appl. Phys. 81 (1997) p. 4410.Google Scholar
71.Wynn, C.M., Girtu, M.A., Miller, J.S., and Epstein, A.J., Phys. Rev. B 56 (1997) p. 315.CrossRefGoogle Scholar
72.Ravindran, K., Rubenacker, G.V., Haines, D.N., and Drumheller, J.E., Phys. Rev. B 40 (1989) p. 9431.CrossRefGoogle Scholar
73.Malozemoff, A.P., Barnes, S.E., and Barbara, B., Phys. Rev. Lett. 51 (1983) p. 1704.Google Scholar
74.Barnes, S.E., Malozemoff, A.P., and Barbara, B., Phys. Rev. B 30 (1984) p. 2765.CrossRefGoogle Scholar
75.Morin, B.G., Hahm, C., Miller, J.S., and Epstein, A.J., J. Appl. Phys. 75 (1994) p. 5782.Google Scholar
76.Decurtins, S., Gütlich, P., Köhler, C.P., Spiering, H., and Hauser, A., Chem. Phys. Lett. 105 (1984) p. 1.Google Scholar
77.Sato, O., Iyoda, T., Fujishima, A., and Hashimoto, K., Science 272 (1996) p. 704.Google Scholar
78.Miyano, K., Tanaka, T., Tomioka, Y., and Tokura, Y., Phys. Rev. Lett. 78 (1997) p. 4257.Google Scholar