Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-10T23:06:25.090Z Has data issue: false hasContentIssue false

Organic Conductors and Superconductors: New Directions in the Solid State

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In single-crystal organic salts, we find a keen competition between superconducting, magnetic, insulating, and metallic states. The physics of these materials is further enriched by the sensitivity of these states to pressure, temperature, chemical formulation, and magnetic field. A growing international community of scientists have turned their attention to these materials, and are applying the techniques and theories of metal and semiconductor physics to probe these new systems. In this article we will explore these materials. We will discover that these materials have given us many new things: a renaissance in fermiology, new high-magnetic-field states of matter, a bulk quantum Hall effect, new challenges in the calculation of energy bands on a small energy scale, and elusive behavior which seems one step away from our present understanding of physics in low dimensions. Electron correlations probably play an important role in determining the phenomena, and should be considered in more microscopic theoretical treatments of these systems.

Type
Materials Science in High Magnetic Fields
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jerome, D. and Schulz, H.J., Adv. Phys. 31 (1982) p. 299.CrossRefGoogle Scholar
2.Tokumoto, M.et al., J. Phys. Soc. Jpn. 59 (1990) p. 2324, and references therein.CrossRefGoogle Scholar
3.Williams, J.M.et al., Inorg. Chem. 29 (1990) p. 3272.CrossRefGoogle Scholar
4.Welp, U.et al., Phys. Rev. Lett. 69 (1992) p. 840.CrossRefGoogle Scholar
5.Organic Superconductivity, edited by Kresin, V.Z. and Little, W.A. (Plenum Press, New York, 1990).CrossRefGoogle Scholar
6.The Physics and Chemistry of Organic Superconductors, edited by Saito, G. and Kagoshima, S. (Springer-Verlag, Berlin, 1989).Google Scholar
7.Ishiguro, T. and Yamaji, K., Organic Superconductors (Springer-Verlag, Berlin, 1990).CrossRefGoogle Scholar
8.Phys. Today 43 (9) (September, 1990).Google Scholar
9.Williams, J.M.et al., Science 252 (1991) p. 1501; Williams, J.M.et al., Organic Superconductors (Including Fullerencs) Synthesis, Structure, Properties, and Theory (Prentice Hall, Englewood Cliffs, NJ).CrossRefGoogle Scholar
10.Jerome, D., Science 252 (1991) p. 1509.CrossRefGoogle Scholar
11.Wosnitza, J., Int. J. Mod. Phys. B (in press).Google Scholar
12.Shoenberg, D., Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).CrossRefGoogle Scholar
13.Tokumoto, M.et al., J. Phys. Soc. Jpn. 59 (1990) p. 2324.CrossRefGoogle Scholar
14.Sasaki, T., Sato, M., and Toyota, N., Syn. Met. 41–43 (1991) p. 2211; Sasaki, T.et al., Solid State Commun. 75 (1990) p. 93; Sasaki, T.et al., ibid. (1990) p. 97.CrossRefGoogle Scholar
15.Pratt, F.L.et al., Phys. Rev. Lett. 68 (1992) p. 2500.Google Scholar
16.Uji, S.et al., to be published.Google Scholar
17.Lebed, A.G., Zh. Eksp. Teor. Viz. 43 (1986) p. 137 [JETP Lett. 43 (1986) p. 174].Google Scholar
18.Naughton, M.J.et al., Phys. Rev. Lett. 67 (1992) p. 3712.CrossRefGoogle Scholar
19.Osada, T.et al., Phys. Rev. Lett. 66 (1991) p. 1525.CrossRefGoogle Scholar
20.Kang, W., Hannahs, S.T., and Chaikin, P.M., Phys. Rev. Lett. 69 (1993) p. 2827; Chaikin, P.M. , Phys. Rev. Lett. 69 (1993) p. 2831.CrossRefGoogle Scholar
21.Yamaji, K.J. Phys. Soc. Jpn. 58 (1989) p. 1520.CrossRefGoogle Scholar
22.Kajita, K.et al., Solid State Commun. 70 (1989) p. 1189.CrossRefGoogle Scholar
23.Kagoshima, S.et al., Mechanisms in Superconductivity, Jpn. J. Appl. Phys. Ser. 7, (1992) p. 381.Google Scholar
24.Athas, G.et al., Bull. Am. Phys. Soc. 38 (1993) p. 826.Google Scholar
25.Kartsovnik, M.V., Kovalev, A.E., Laukhin, V.N., and Pesotskii, S.I., J. Phys. J. France 2 (1992) p. 223.CrossRefGoogle Scholar
26.Jerome, D., Mazaud, A., Ribault, M., and Bechgaard, K., J. Phys. (Paris) 41 (1980) p. L95.Google Scholar
27. See, for example, a recent paper by Wong, W.H.et al., Phys. Rev. Lett. 70 (1993) p. 1882 and references therein.CrossRefGoogle Scholar
28.Cooper, J.R.et al., Phys. Rev. Lett. 63 (1989) p. 1984; Hannahs, S.T. et al., Phys. Rev. Lett. 63 (1989) p. 1988.CrossRefGoogle Scholar
29.Gor'kov, L.P. and Lebed', A.G., J. Phys. Lett. 45 (1984) p. L433; P.M. Chaikin, Phys. Rev. B 31 (1985) p. 4770; Heritier, M., Montambaux, G., and Lederer, P., J. Phys. Lett. 45 (1984) p. L-943; Yamaji, K., J. Phys. Soc. Jpn. 54 (1985) p. 1034; Azbel, M.Y., Bak, P., and Chaikin, P.M., Phys. Lett. A 117, (1986) p. 92; Maki, K., Phys. Rev. B 33, (1986) p. 4826.CrossRefGoogle Scholar
30.Takahashi, T.et al., Synth. Met. (in press).Google Scholar
31.Osada, T.et al., Phys. Rev. B. 41 (1990) p. 5428.CrossRefGoogle Scholar
32.Brooks, J.S.et al., Phys. Rev. Lett. 69 (1992) p. 156.CrossRefGoogle Scholar
33.Singleton, J.et al., Phys. Rev. Lett. 68 (1992) p. 2500.CrossRefGoogle Scholar
34.Sasaki, T. and Toyota, N., Solid State Commun. 82 (1992) p. 447.CrossRefGoogle Scholar
35.Kouno, T.et al., Int. Conf. Synth. Met., 1992, to be published.Google Scholar
36.Uji, S., to be published.Google Scholar
37.Klepper, S.J.et al., to be published.Google Scholar
38.Kwok, W.K., Mod. Phys. Lett. B 5 (1991) p. 547.CrossRefGoogle Scholar
39.Kwok, W.K.et al., Phys. Rev. B 42 (1990) p. 8686.CrossRefGoogle Scholar
40.Sleator, T. and Tycho, R., Phys. Rev. Lett. 60 (1988) p. 1418.CrossRefGoogle Scholar
41.Fainchtein, R.et al., Science 256 (1992) p. 1012.CrossRefGoogle Scholar
42.Campos, C.et al., to be published.Google Scholar
43.Mori, H.et al., Bull. Chem. Soc. Jpn. 63 (1990) p. 2183.CrossRefGoogle Scholar
44.Chen, X., PhD thesis, Boston University, in preparation; Klepper, S. et al., to be published.Google Scholar
45.Ng, H.K., Timusk, T., and Bechgaard, K., J. Phys. (Paris) Colloq. 44 (1983) p. C3867; Ng, K.K. and Timusk, T., Mol. Cryst. Liq. Cryst. 119 (1985) p. 191; Timusk, T., in Low Dimensional Conductors and Superconductors, edited by Jerome, D. and Caron, L.G. (Plenum, New York, 1987); Eldridge, J.E. et al., Phys. Rev. B 32 (1985) p. 5156.CrossRefGoogle Scholar
46.Perel, A.S.et al., Phys. Rev. Lett. 67 (1991) p. 2072.CrossRefGoogle Scholar
47.Janssen, T.J.B.M.et al., Phys. Rev. B 46 (1992) p. 8663.CrossRefGoogle Scholar
48.Singleton, J.et al., Phys. Rev. Lett. 68 (1992) p. 2500.CrossRefGoogle Scholar
49.Azbel, M.Y., private communication.Google Scholar
50.Tanaka, Y., Satoh, N., and Nagasaka, K., J. Phys. Soc. Jpn. 59 (1990) p. 319.CrossRefGoogle Scholar
51.Singleton, J., private communication; Kozlov, M.E. and Tokumoto, M., to be published.Google Scholar
52.Campos, C.et al., to be published.Google Scholar
53.Thorup, N.et al., Acta. Crystallogr. Sec. B 37 (1981) p. 1236; Rindorf, G. et al., 38 (1982) p. 2805.CrossRefGoogle Scholar
54.Mori, T.et al., Chem. Lett. (1982) p. 1932.Google Scholar
55.Chaikin, P.M.et al., to be published.Google Scholar
56.Brooks, J.S.et al., Physica B 184 (1993) p. 489.CrossRefGoogle Scholar
57.Klepper, S.J.et al., to be published.Google Scholar
58.Athas, G.J.et al., to be published.Google Scholar
59.Azevedo, L.et al., Phys. Rev. B 28 (1983) p. 6600.CrossRefGoogle Scholar
60.Kinoshita, et al., Physica C 185–189 (1991) p. 2677.CrossRefGoogle Scholar
61.Sasaki, T., Sato, H., and Toyota, N., Synth. Met. 41–43 (1991) p. 2211.CrossRefGoogle Scholar
62.Dubois, J.et al., to be published.Google Scholar