Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-20T08:18:41.752Z Has data issue: false hasContentIssue false

New surprises “down below”: Recent successes in the synthesis of actinide materials

Published online by Cambridge University Press:  31 January 2011

J. L. Sarrao
Affiliation:
Los Alamos National Laboratory, NM 87545, USA; sarrao@lanl.gov
Y. Haga
Affiliation:
Advanced Science Research Center, Japan Atomic Energy Agency; haga.yoshinori@jaea.go.jp
R. C. C. Ward
Affiliation:
Department of Physics, Oxford University, UK; roger.ward@physics.ox.ac.uk
Get access

Abstract

Recent discoveries of novel electronic states, including relatively high-temperature superconductivity, in the actinides point to exciting prospects for future discoveries at the bottom of the periodic table. A key ingredient in all of the successes discussed here is the role of high-quality synthesis in enabling advances. Results on PuCoGa51, NpPd5Al2, and single crystal uranium are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Moore, K.T., van der Laan, G., Rev. Mod. Phys. 81, 235 (2009).CrossRefGoogle Scholar
2.Santini, P., Carretta, S., Amoretti, G., Caciuffo, R., Magnani, N., Lander, G.H., Rev. Mod. Phys. 81, 807 (2009).CrossRefGoogle Scholar
3.Sarrao, J.L., Morales, L.A., Thompson, J.D., Scott, B.L., Stewart, G.R., Wastin, F., Rebizant, J., Boulet, P., Collneau, E., Lander, G.H.Nature 420, 297 (2002).CrossRefGoogle Scholar
4.Aokl, D., Haga, Y., Matsuda, T.D., Tateiwa, N., Ikeda, S., Homma, Y., Sakai, H., Shlokawa, Y., Yamamoto, E., Nakamura, A., Setta, R., Onukl, Y., J. Phys. Soc. Jpn. 76, 063701 (2007).Google Scholar
5.Ward, R.C.C., Cowley, R.A., Ling, N., Goetze, W., Lander, G.H., Stirling, W.G.J. Phys. Condens. Matter 20, 135003 (2008).CrossRefGoogle Scholar
6.Pfleiderer, C., Rev. Mod. Phys. 81, 1551 (2009).CrossRefGoogle Scholar
7.Sarrao, J.L., Thompson, J.D., J. Phys. Soc. Jpn. 76, 051013 (2007).CrossRefGoogle Scholar
8.Wastin, F., Boulet, P., Rebizant, J., Collneau, E., Lander, G.H., J. Phys. Condens. Matter 15, S2279 (2003).CrossRefGoogle Scholar
9.Curro, N.J., Caldwell, T., Bauer, E.D., Morales, L.A., Graf, M.J., Bang, Y., Balatsky, A.V., Thompson, J.D., Sarrao, J.L., Nature 434, 622 (2005).CrossRefGoogle Scholar
10.Bauer, E.D., Thompson, J.D., Sarrao, J.L., Morales, L.A., Wastin, R., Rebizant, J., Griveau, J.C., Javorsky, P., Boulet, P., Collneau, E., Lander, G.H., Stewart, G.R., Phys. Rev Lett. 93 (2004).CrossRefGoogle Scholar
11.Joyce, J.J., Wills, J.M., Duraklewicz, T., Butterfleld, M.T., Guzlewicz, E., Sarrao, J.L., Morales, L.A., Arko, A.J., Eriksson, O., Phys. Rev. Lett. 91, 176401 (2003)CrossRefGoogle Scholar
12.Sarrao, J.L., Morales, L.A., Thompson, J.D., JOM 55, 38 (2003).CrossRefGoogle Scholar
13.Shim, J.H., Haule, K., Kotliar, G., Nature 446, 513 (2007).CrossRefGoogle Scholar
14.Jutier, F., Ummarino, G.A., Griveau, J.C., Wastin, F., Collneau, E., Rebizant, J., Magnani, N., Caciuffo, R., Phys. Rev B 77, 024521 (2008).CrossRefGoogle Scholar
15.Ikeda, S., Toklwa, Y., Matsuda, T.D., Galatanu, A., Yamamoto, E., Nakamura, A., Haga, Y., Onukl, Y., Physica B 359, 1039 (2005).CrossRefGoogle Scholar
16.Moreno, N.O., Bauer, E.D., Sarrao, J.L., Hundley, M.F., Thompson, J.D., Fisk, Z.Phys. Rev B 72, 035119 (2005).CrossRefGoogle Scholar
17.Geibel, C., Schank, C., Thies, S., Kitazawa, H., Bredl, C.D., Böhm, A., Rau, M., Grauel, A., Caspary, R., Helfrich, R., Ahlheim, U., Weber, G., Steglich, F., Z. Phys. B 84, 1 (1991).CrossRefGoogle Scholar
18.Gelbel, C., Thies, S., Kaczorowski, D., Mehner, A., Grauel, A., Seidel, B., Ahlhelm, U., Helfrich, R., Petersen, K., Bredl, C.D., Steglich, F., Z Phys. B 83, 305 (1991).CrossRefGoogle Scholar
19.Haga, Y., Aokl, D., Homma, Y., Ikeda, S., Matsuda, T.D., Yamamoto, E., Sakal, H., Tatejwa, N., Dung, N.D., Nakamura, A., Shiokawa, Y., Onukl, Y., J. Alloys Compd. 464, 47 (2008).CrossRefGoogle Scholar
20.Ribelro, R.A., Onlmaru, T., Umeo, K., Avila, M.D.A., Shigetoh, K., Takabatake, T.J. Phys. Soc. Jpn. 76, 123710 (2007).Google Scholar
21.Gofryk, K., Griveau, J.C., Collneau, E., Rebizant, J., Phys. Rev. B 77, 092405 (2008)CrossRefGoogle Scholar
22.McPheeters, C.C., Gay, E.C., Karell, E.J., Ackerman, J.P., JOM 49 (7), 22 (1997)CrossRefGoogle Scholar
23.Springell, R., Detlefs, B., Lander, G.H., Ward, R.C.C., Cowley, R.A., Ling, N., Goetze, W., Ahuja, R., Luo, W., Johansson, B., Phys. Rev. B 78, 193403 (2008).CrossRefGoogle Scholar
24.Lander, G.H., Fisher, E.S., Bader, S.D., Adv. Phys. 43, 1 (1994).CrossRefGoogle Scholar
25.Fast, L., Eriksson, O., Johansson, B., Wills, J.M., Straub, G., Roeder, H., Nordström, L., Phys. Rev. Lett. 81, 2978 (1998).CrossRefGoogle Scholar
26.Berbll-Bautlsta, L., Hanke, T., Getzlaff, M., Welsendanger, R., Opahle, I., Koepernik, K., Richter, M., Phys. Rev. B 70, 113401 (2004).CrossRefGoogle Scholar