Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T20:27:56.963Z Has data issue: false hasContentIssue false

Nanopatterning with UV Optical Lithography

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Optical lithography at ultraviolet (UV) wavelengths is the standard process for patterning 90-nm state-of-the-art devices in the semiconductor industry, and extensions to 45 nm and below are currently being explored. With such high resolution, the inherent high throughput of optical lithography will enable the development of a broad range of applications beyond semiconductor electronics. In this article, we will review progress toward nanopatterning with UV light in a variety of materials and geometries.The common thread is the use of short wavelengths, 193 nm or 157 nm, coupled with immersion to further reduce the effective wavelength. Densely spaced, 32-nm (and even smaller) features have been patterned, facilitating the future preparation of large-area, deeply scaled microelectronics, nanophotonics, nanobiology, and molecular-scale self-assembly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. International Technology Roadmap for Semiconductors, 2003 Edition: Lithography, http://public.itrs.net/Files/2003ITRS/Home2003. htm (accessed November 2005); International Technology Roadmap for Semiconductors, 2004 Update: Lithography, www.itrs.net/Common/2004Update/2004_07_Lithography.pdf (accessed November 2005).Google Scholar
2.Born, M. and Wolf, E., Principles of Optics, 5th ed., Ch. IX (Pergamon Press, Oxford, 1975).Google Scholar
3.Fritze, M., Chen, C.K., Astolfi, D.K., Yost, D.R., Burns, J.A., Chen, C.-L., Gouker, P.M., Suntharalingam, V., Wyatt, P.W., and Keast, C.L., IEEE Circuits and Devices Magazine 19 (1) (2003) p. 43.CrossRefGoogle Scholar
4.Fritze, M., Mallen, R., Wheeler, B., Yost, D., Snyder, J.P., Kasprowicz, B., Eynon, B., and Liu, H.Y., Proc. SPIE 5040 (2003) p. 327.CrossRefGoogle Scholar
5.Matsuyama, T., Ishiyama, T., and Ohmura, Y., Proc. SPIE 5377 (2004) p. 730.CrossRefGoogle Scholar
6.Namba, A., Uzawa, S., and Kotoku, K., Proc. SPIE 5377 (2004) p. 758.CrossRefGoogle Scholar
7.Hsu, S.-H., Fang, S.-P., Huang, I.H., Lin, B.S.-M., and Hung, K.-C., Proc. SPIE 5377 (2004) p. 1214.CrossRefGoogle Scholar
8.Bloomstein, T.M., Horn, M.W., Rothschild, M., Kunz, R.R., Palmacci, S.T., and Goodman, R.B., J. Vac. Sci. Technol. B 15 (1997) p. 2112.CrossRefGoogle Scholar
9.Liberman, V., Bloomstein, T.M., Rothschild, M., Sedlacek, J.H.C., Uttaro, R.S., Bates, A.K., Van Peski, C., and Orvek, K., J. Vac. Sci. Technol. B 17 (1999) p. 3273.CrossRefGoogle Scholar
10.Kohli, J.T., Li, Q., and Rosch, W.R., Proc. SPIE 5377 (2004) p. 1735.CrossRefGoogle Scholar
11.Grabosch, G., Parthier, L., Kruell, P., and Knapp, K., Proc. SPIE 5377 (2004) p. 1781.CrossRefGoogle Scholar
12.Okoroanyanwu, U., Gronheid, R., Coenen, J., Hermans, J., and Ronse, K.G., Proc. SPIE 5377 (2004) p. 1695.CrossRefGoogle Scholar
13.Houlihan, F.M., Sakamuri, R., Romano, A., Rentkiewicz, D., Dammel, R., Conley, W., Miller, D., Sebald, M., Stepanenko, N., Markert, M., Mierau, U., Vermeir, I., Hohle, C., Itani, T., Shigematsu, M., and Kawaguchi, E., Proc. SPIE 5376 (2004) p. 134.CrossRefGoogle Scholar
14.Li, W., Rao Varanasi, P., Lawson, M.C., Kwong, R.W., Chen, K.-J., Ito, H., Truong, H., Allen, R.D., Yamamoto, M., Kobayashi, E., and Slezak, M., Proc. SPIE 5039 (2003) p. 61.CrossRefGoogle Scholar
15.Grenville, A., Liberman, V., Rothschild, M., Sedlacek, J.H.C., French, R.H., Wheland, R.C., Zhang, X., and Gordon, J., Proc. SPIE 4691 (2002) p. 1644.CrossRefGoogle Scholar
16.French, R., Wheland, R.C., Qiu, W., Lemon, M.F., Blackman, G.S., Zhang, E., Gordon, J., Liberman, V., Grenville, A., Kunz, R.R., and Rothschild, M., Proc. SPIE 4691 (2002) p. 576.CrossRefGoogle Scholar
17.Switkes, M. and Rothschild, M., Proc. SPIE 4691 (2002) p. 459.CrossRefGoogle Scholar
18.Burnett, J.H. and Kaplan, S.G., J. Microlith. Microfab. Microsyst. 3 (2004) p. 68.Google Scholar
19.Lin, B.-J., Proc. SPIE 5377 (2004) p. 46.CrossRefGoogle Scholar
20.Owa, S., Nagasaka, H., Ishii, Y., Hirakawa, O., and Yamamoto, T., Proc. SPIE 5377 (2004) p. 264.CrossRefGoogle Scholar
21.Streefkerk, B., Baselmans, J., Gehoel-van Ansem, W., Mulkens, J., Hoogendam, C., Hoogendorp, M., Flagello, D., Sewell, H., and Graeupner, P., Proc. SPIE 5377 (2004) p. 285.CrossRefGoogle Scholar
22.Honda, T., Kishikawa, Y., Tokita, T., Ohsawa, H., Kawashima, M., Ohkubo, A., Yoshii, M., and Suzuki, A., Proc. SPIE 5377 (2004) p. 319.CrossRefGoogle Scholar
23.Hinsberg, W., Wallraff, G.M., Larson, C.E., Davis, B.W., Deline, V., Raoux, S., Miller, D., Houle, F.A., Hoffnagle, J., Sanchez, M.I., Rettner, C., and Sundberg, L.K., Proc. SPIE 5376 (2004) p. 21.CrossRefGoogle Scholar
24.Gil, D., Brunner, T., Fonseca, C., Song, N., Streefkerk, B., Wagner, C., and Stavenga, M., J. Vac. Sci. Technol. B 22 (2004) p. 3431.CrossRefGoogle Scholar
25.Liberman, V., Palmacci, S.T., Hardy, D.E., Rothschild, M., and Grenville, A., Proc. SPIE 5754 (2005) p. 148.Google Scholar
26.Brunner, T., Seong, N., Hinsberg, W.D., Hoffnagle, J.A., Houle, F.A., and Sanchez, M.I., Proc. SPIE 4691 (2002) p. 1.CrossRefGoogle Scholar
27.Smith, B. and Cashmore, J., Proc. SPIE 4691 (2002) p. 11.CrossRefGoogle Scholar
28.Peng, S., French, R.H., Qiu, W., Wheland, R.C., Yang, M., Lemon, M.F., and Crawford, M.K., Proc. SPIE 5754 (2005) p. 427.Google Scholar
29.Burnett, J., Kaplan, S.G., Shirley, E.L., Tompkins, P.J., and Webb, J.E., Proc. SPIE 5754 (2005) p. 611.Google Scholar
30.Rothschild, M., Bloomstein, T.M., Kunz, R.R., Liberman, V., Switkes, M., Palmacci, S.T., Sedlacek, J.H.C., Hardy, D., and Grenville, A., J. Vac. Sci. Technol. B 22 (2004) p. 2877.CrossRefGoogle Scholar
31.Synowicki, R.A., Pribil, G.K., Cooney, G., Herzinger, C.M., Green, S.E., French, R.H., Yang, M.K., Burnett, J.H., and Kaplan, S., J. Vac. Sci. Technol. B 22 (2004) p. 3450.CrossRefGoogle Scholar
32.Switkes, M., Bloomstein, T.M., Rothschild, M., Arriola, E.W., and Morrison, T.H., Proc. SPIE 5754 (2005) p. 237.Google Scholar
33.Yen, A., Anderson, E.H., Ghanbari, R.A., Schattenburg, M.L., and Smith, H.I., Appl. Opt. 31 (1992) p. 4540.CrossRefGoogle Scholar
34.Savas, T.A., Schattenburg, M.L., Carter, J.M., and Smith, H.I., J. Vac. Sci. Technol. B 14 (1996) p. 4167.CrossRefGoogle Scholar
35.Hofnagle, J.A., Hinsberg, W.D., Sanchez, M., and Houle, F.A., J. Vac. Sci. Technol. B 17 (1999) p. 3306.CrossRefGoogle Scholar
36.Switkes, M., Bloomstein, T.M., and Rothschild, M., Appl. Phys. Lett. 77 (2000) p. 3149.CrossRefGoogle Scholar
37.Switkes, M. and Rothschild, M., J. Vac. Sci. Technol. B 19 (2001) p. 2353.CrossRefGoogle Scholar
38.Bloomstein, T.M., Juodawlkis, P.W., Swint, R.B., Cann, S.G., Deneault, S.J., Efremow, N.N. Jr., Hardy, D.E., Marchant, M.F., Napoleone, A., Oakley, D.C., Rothschild, M., and Brooker, P., J. Vac. Sci. Technol. B 23 (2005).Google Scholar
39.Fritze, M., Tyrrell, B., Fedynyshyn, T.H., and Rothschild, M., Proc. SPIE 5751 (2005) p. 1058.CrossRefGoogle Scholar
40.Fritze, M., Bloomstein, T.M., Tyrrell, B., Fedynyshyn, T.H., Efremow, N.N. Jr, Hardy, D.E., Cann, S., Lennon, D., Spector, S., and Rothschild, M., J. Vac. Sci. Technol. B 23 (2005)Google Scholar