Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T19:18:55.478Z Has data issue: false hasContentIssue false

Metal–organic frameworks for thermoelectric energy-conversion applications

Published online by Cambridge University Press:  07 November 2016

A. Alec Talin
Affiliation:
Sandia National Laboratories, USA; aatalin@sandia.gov
Reese E. Jones
Affiliation:
Sandia National Laboratories, USA; rjones@sandia.gov
Patrick E. Hopkins
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Virginia, USA; phopkins@virginia.edu
Get access

Abstract

Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal–organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of finding stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this article, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rowe, D.M., Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, FL, 2005).Google Scholar
Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J., Science 321, 554 (2008).Google Scholar
Weathers, A., Khan, Z.U., Brooke, R., Evans, D., Pettes, M.T., Andreasen, J.W., Crispin, X., Shi, L., Adv. Mater. 27, 2101 (2015).Google Scholar
Liu, J., Wang, X., Li, D., Coates, N.E., Segalman, R.A., Cahill, D.G., Macromolecules 48, 585 (2015).CrossRefGoogle Scholar
Sheng, P., Sun, Y., Jiao, F., Di, C., Xu, W., Zhu, D., Synth. Met. 193, 1 (2014).Google Scholar
Sun, Y., Sheng, P., Di, C., Jiao, F., Xu, W., Qiu, D., Zhu, D., Adv. Mater. 24, 932 (2012).CrossRefGoogle Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Science 320, 634 (2008).Google Scholar
Yan, X.A., Poudel, B., Ma, Y., Liu, W.S., Joshi, G., Wang, H., Lan, Y.C., Wang, D.Z., Chen, G., Ren, Z.F., Nano Lett. 10, 3373 (2010).CrossRefGoogle Scholar
Kanatzidis, M.G., MRS Bull. 40, 687 (2015).Google Scholar
Bahk, J.-H., Fang, H., Yazawa, K., Shakouri, A., J. Mater. Chem. C 3, 10362 (2015).Google Scholar
Zhang, Q., Sun, Y., Xu, W., Zhu, D., Adv. Mater. 26, 6829 (2014).Google Scholar
Chen, Y., Zhao, Y., Liang, Z., Energy Environ. Sci. 8, 401 (2015).Google Scholar
Heeger, A.J., Chem. Soc. Rev. 39, 2354 (2010).Google Scholar
Bubnova, O., Khan, Z.U., Wang, H., Braun, S., Evans, D.R., Fabretto, M., Hojati-Talemi, P., Dagnelund, D., Arlin, J.B., Geerts, Y.H., Desbief, S., Breiby, D.W., Andreasen, J.W., Lazzaroni, R., Chen, W.M.M., Zozoulenko, I., Fahlman, M., Murphy, P.J., Berggren, M., Crispin, X., Nat. Mater. 13, 662 (2014).Google Scholar
Kim, G.H., Shao, L., Zhang, K., Pipe, K.P., Nat. Mater. 12, 719 (2013).Google Scholar
Russ, B., Robb, M.J., Brunetti, F.G., Miller, P.L., Perry, E.E., Adv. Mater. 26, 3473 (2014).CrossRefGoogle Scholar
Pajerowski, D.M., Watanabe, T., Yamamoto, T., Einaga, Y., Phys. Rev. B Condens. Matter 83, 153202 (2011).Google Scholar
Gliemann, G., Yersin, H., Struct. Bond. 62, 87 (1985).Google Scholar
Erickson, K.J., Leonard, F., Stavila, V., Foster, M.E., Spataru, C.D., Jones, R.E., Foley, B.M., Hopkins, P.E., Allendorf, M.D., Talin, A.A., Adv. Mater. 27, 3453 (2015).Google Scholar
Talin, A.A., Centrone, A., Ford, A.C., Foster, M.E., Stavila, V., Haney, P., Kinney, R.A., Szalai, V., El Gabaly, F., Yoon, H.P., Leonard, F., Allendorf, M.D., Science 343, 66 (2014).CrossRefGoogle Scholar
Zhuang, J.-L., Ar, D., Yu, X.-J., Liu, J.-X., Terfort, A., Adv. Mater. 25, 4631 (2013).Google Scholar
Cahill, D.G., Rev. Sci. Instrum. 75, 5119 (2004).CrossRefGoogle Scholar
Slack, G.A., Rowe, D., CRC Thermoelectrics Handbook (CRC Press, Boca Raton, FL, 1995).Google Scholar
Allen, P.B., Feldman, J.L., Fabian, J., Wooten, F., Philos. Mag. B 79, 1715 (1999).Google Scholar
Shenogin, S., Bodapati, A., Keblinski, P., McGaughey, A.J.H., J. Appl. Phys. 105, 034906 (2009).Google Scholar
Larkin, J.M., McGaughey, A.J.H., Phys. Rev. B 89, 144303 (2014).Google Scholar
Braun, J.L., Baker, C.H., Giri, A., Elahi, M., Artyushkova, K., Beechem, T.E., Norris, P.M., Leseman, Z.C., Gaskins, J.T., Hopkins, P.E., Phys. Rev. B 93, 140201 (2016).Google Scholar
Einstein, A., Ann. Phys. 35, 679 (1911).Google Scholar
Cahill, D.G., Watson, S.K., Pohl, R.O., Phys. Rev. B 46, 6131 (1992).CrossRefGoogle Scholar
Huang, B., McGaughey, A., Kaviany, M., Int. J. Heat Mass Transf. 50, 393 (2007).Google Scholar
Wang, X., Guo, R., Xu, D., Chung, J., Kaviany, M., Huang, B., J. Phys. Chem. C, 119, 26000 (2015).Google Scholar
Cahill, D.G., Pohl, R.O., Annu. Rev. Phys. Chem. 39, 93 (1988).Google Scholar
Nolas, G.S., Cohn, J., Slack, G., Phys. Rev. B 58, 164 (1998).Google Scholar
Nolas, G.S., Poon, J., Kanatzidis, M., MRS Bull. 31, 199 (2006).CrossRefGoogle Scholar
Bentien, A., Christensen, M., Bryan, J., Sanchez, A., Paschen, S., Steglich, F., Stucky, G., Iversen, B., Phys. Rev. B Condens. Matter 69, 045107 (2004).Google Scholar
McGaughey, A., Kaviany, M., Int. J. Heat Mass Transf. 47, 1799 (2004).Google Scholar
Shi, X., Kong, H., Li, C.-P., Uher, C., Yang, J., Salvador, J., Wang, H., Chen, L., Zhang, W., Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
Tadano, T., Gohda, Y., Tsuneyuki, S., Phys. Rev. Lett. 114, 095501 (2015).CrossRefGoogle Scholar
Qiu, W., Xi, L., Wei, P., Ke, X., Yang, J., Zhang, W., Proc. Natl. Acad. Sci. U.S.A. 111, 15031 (2014).Google Scholar
Kittel, C., Introduction to Solid State Physics, 8th ed. (Wiley Hoboken, NJ, 2015), chap. 4.Google Scholar
Huang, B.L., Ni, Z., Millward, A., McGaughey, A.J.H., Uher, C., Kaviany, M., Yaghi, O., Int. J. Heat Mass Transf. 50, 405 (2007).Google Scholar
Duda, J.C., Hopkins, P.E., Shen, Y., Gupta, M.C., Phys. Rev. Lett. 110, 015902 (2013).Google Scholar
Duda, J.C., Hopkins, P.E., Shen, Y., Gupta, M.C., Appl. Phys. Lett. 102, 251912 (2013).Google Scholar
Tang, X., Xie, W., Li, H., Zhao, W., Zhang, Q., Niino, M., Appl. Phys. Lett. 90, 12102 (2007).Google Scholar
Zhao, X.B., Ji, X.H., Zhang, Y.H., Zhu, T.J., Tu, J.P., Zhang, X.B., Appl. Phys. Lett. 86, 062111 (2005).CrossRefGoogle Scholar
Jiang, X.-F., Xu, J.-K., Lu, B.-Y., Xie, Y., Huang, R.-J., Li, L.-F., Chin. Phys. Lett. 25, 6 (2008).Google Scholar