Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-23T06:24:11.842Z Has data issue: false hasContentIssue false

Metal deformation and phase transitions at extremely high strain rates

Published online by Cambridge University Press:  31 January 2011

R. E. Rudd
Affiliation:
Lawrence Livermore National Laboratory, L-045, Livermore, CA 94550, USA; robert.rudd@llnl.gov
T. C. Germann
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA; tcg@lanl.gov
B. A. Remington
Affiliation:
Lawrence Livermore National Laboratory, L-481, Livermore, CA 94550, USA; remington2@llnl.gov
J. S. Wark
Affiliation:
Clarendon Laboratory, University of Oxford, Parks Rd., Oxford, OX1 3PU, UK; Justin.wark@physics.ox.ac.uk
Get access

Abstract

The powerful lasers being constructed for inertially confined fusion generate enormous pressures extremely rapidly. These extraordinary machines both motivate the need and provide the means to study materials under extreme pressures and loading rates. In this frontier of materials science, an experiment may last for just 10s of nanoseconds. Processes familiar at ambient conditions, such as phase transformations and plastic flow, operate far from equilibrium and show significant kinetic effects. Here we describe recent developments in the science of metal deformation and phase transitions at extreme pressures and strain rates. Ramp loading techniques enable the study of solids at high pressures (100s of GPa) at moderate temperatures. Advanced diagnostics, such as in situ x-ray scattering, allow time-resolved material characterization in the short-lived high-pressure state, including crystal structure (phase), elastic compression, the size of microstructural features, and defect densities. Computer simulation, especially molecular dynamics, provides insight into the mechanisms of deformation and phase change.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nuckolls, J., Wood, L., Thiessen, A., Zimmerman, G.B., Nature 239, 129 (1972).CrossRefGoogle Scholar
2. Post, R., Phys. Today 26, 30 (1973).CrossRefGoogle Scholar
3. Lindl, J., Phys. Plasmas 2, 3933 (1995).CrossRefGoogle Scholar
4. Tabak, M., Clark, D.S., Hatchett, S.P., Key, M.H., Lasinski, B.F., Snavely, R.A., Wilks, S.C., Town, R.P.J., Stephens, R., Campbell, E.M., Kodama, R., Mima, K., Tanaka, K.A., Atzeni, S., Freeman, R., Phys. Plasmas 12, 057305 (2005).CrossRefGoogle Scholar
5. Haynam, C.A., Wegner, P.J., Auerbach, J.M., Bowers, M.W., Dixit, S.N., Erbert, G.V., Heestand, G.M., Henesian, M.A., Hermann, M.R., Jancaitis, K.S., Manes, K.R., Marshall, C.D., Mehta, N.C., Menapace, J., Moses, E., Murray, J.R., Nostrand, M.C., Orth, C.D., Patterson, R., Sacks, R.A., Shaw, M.J., Spaeth, M., Sutton, S.B., Williams, W.H., Widmayer, C.C., White, R.K., Yang, S.T., Van Wonterghem, B.M., Appl. Opt. 46, 3276 (2007).CrossRefGoogle Scholar
6. Rinehart, J.S., Pearson, J., Explosive Working of Metals (Pergamon Press, Oxford, 1963).Google Scholar
7. Conrad, C.P., Molnar, P., Geophys. J. Int. 129, 95 (1997).CrossRefGoogle Scholar
8. Temporal, M., López Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A., Hoffmann, D.H.H., Laser Part. Beams 23, 137 (2005).CrossRefGoogle Scholar
9. Sheppard, M., Atchison, W., Keinigs, R., Stokes, J., Proc. IEEE Pulsed Power Conf. 2, 892 (1999).CrossRefGoogle Scholar
10. Slutz, S.A., Herrmann, M.C., Vesey, R.A., Sefkow, A.B., Sinars, D.B., Rovang, D.C., Peterson, K.J., Cuneo, M.E., Phys. Plasmas 17, 056303 (2010).CrossRefGoogle Scholar
11. Remington, B.A., Weber, S.V., Marinak, M.M., Hsing, W.W., Hoffman, N.M., in Inertial Confinement Fusion Quarterly Report (UCRL-LR-105821–95–4, 1995), p. 232.Google Scholar
12. Edwards, J., Lorenz, K.T., Remington, B.A., Pollaine, S., Colvin, J., Braun, D., Lasinski, B.F., Reisman, D., McNaney, J.M., Greenough, J.A., Wallace, R., Louis, H., Kalantar, D., Phys. Rev. Lett. 92, 075002 (2004).CrossRefGoogle Scholar
13. Lorenz, K.T., Edwards, M.J., Glendinning, S.G., Jankowski, A.F., McNaney, J., Remington, S.M., High Energy Density Phys. 2, 113 (2006).CrossRefGoogle Scholar
14. Park, H.-S., Lorenz, K.T., Cavallo, R.M., Pollaine, S.M., Prisbey, S.T., Rudd, R.E., Becker, R.C., Bernier, J.V., Remington, B.A., Phys. Rev. Lett. 104, 135504 (2010).CrossRefGoogle Scholar
15. Barnes, J.F., Blewett, P.J., McQueen, R.G., Meyer, K.A., Venable, D., J. Appl. Phys. 45, 727 (1974).CrossRefGoogle Scholar
16. Barnes, J.F., Janney, D.H., London, R.K., Meyer, K.A., Sharp, D.H., J. Appl. Phys. 51, 4678 (1980).CrossRefGoogle Scholar
17. Park, H.-S., Remington, B.A., Becker, R.C., Bernier, J.V., Cavallo, R.M., Lorenz, K.T., Pollaine, S.M., Prisbrey, S.T., Rudd, R.E., Barton, N.R., Phys. Plasmas 17, 056314 (2010).CrossRefGoogle Scholar
18. Asay, J.R., Ao, T., Vogler, T.J., Davis, J.-P., Gray, G.T. III, J. Appl. Phys. 106, 073515 (2009).CrossRefGoogle Scholar
19. Bradley, D.K., Eggert, J.H., Smith, R.F., Prisbrey, S.T., Hicks, D.G., Braun, D.G., Biener, J., Hamza, A.V., Rudd, R.E., Collins, G.W., Phys. Rev. Lett. 102, 075503 (2009).CrossRefGoogle Scholar
20. Meyers, M.A., Gregori, F., Kad, B.K., Schneider, M.S., Kalantar, D.H., Remington, B.A., Ravichandran, G., Boehly, T., Wark, J.S., Acta Mater. 51, 1211 (2003).CrossRefGoogle Scholar
21. Frutschy, K.J., Clifton, R.J., J. Mech. Phys. Solids 46, 1723 (1998).CrossRefGoogle Scholar
22. Wark, J.S., Whitlock, R.R., Hauer, A., Swain, J.E., Solone, P.J., Phys. Rev. B 35, 9391 (1987).CrossRefGoogle Scholar
23. Wark, J.S., Whitlock, R.R., Hauer, A., Swain, J.E., Solone, P.J., Phys. Rev. B 40, 5705 (1989).CrossRefGoogle Scholar
24. Kalantar, D.H., Bringa, E.M., Caturla, M., Colvin, J., Lorenz, K.T., Kumar, M., Stolken, J., Allen, A.M., Rosolankova, K., Wark, J.S., Meyers, M.A., Schneider, M., Boehly, T.R., Rev. Sci. Instrum. 74, 1929 (2003).CrossRefGoogle Scholar
25. Rosolankova, K., Wark, J.S., Bringa, E.M., Hawreliak, J., J. Phys. Condens. Matter 18, 6749 (2006).CrossRefGoogle Scholar
26. Loveridge-Smith, A., Allen, A., Belak, J., Boehly, T., Hauer, A., Holian, B., Kalantar, D., Kyrala, G., Lee, R.W., Lomdahl, P., Meyers, M.A., Paisley, D., Pollaine, S., Remington, B., Swift, D.C., Weber, S., Wark, J.S., Phys. Rev. Lett. 86, 2349 (2001).CrossRefGoogle Scholar
27. Murphy, W.J., Higginbotham, A., Kimminau, G., Barbrel, B., Bringa, E.M., Hawreliak, J., Kodama, R., Koenig, M., McBarron, W., Meyers, M.A., Nagler, B., Ozaki, N., Park, N., Remington, B., Rothman, S., Vinko, S.M., Whitcher, T., Wark, J.S., J. Phys. Condens. Matter 22, 065404 (2010).CrossRefGoogle Scholar
28. Kalantar, D.H., Belak, J.F., Collins, G.W., Colvin, J.D., Davies, H.M., Eggert, J.H., Germann, T.C., Hawreliak, J., Holian, B.L., Kadau, K., Lomdahl, P.S., Lorenzana, H.E., Meyers, M.A., Rosolankova, K., Schneider, M.S., Sheppard, J., Stolken, J.S., Wark, J.S., Phys. Rev. Lett. 95, 075502 (2005).CrossRefGoogle Scholar
29. Suggit, M., Kimminau, G., Hawreliak, J., Remington, B., Park, N., Wark, J., Rev. Sci. Instrum. 81, 083902 (2010).CrossRefGoogle Scholar
30. Hawreliak, J., Lorenzana, H.E., Remington, B.A., Lukezic, S., Wark, J.S., Rev. Sci. Instrum. 78, 083908 (2007).CrossRefGoogle Scholar
31. Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
32. Glosli, J.N., Caspersen, K.J., Richards, D.F., Rudd, R.E., Streitz, F.H., Gunnels, J.A., in Proc. Supercomputing 2007 (2007).Google Scholar
33. Kadau, K., Germann, T.C., Lomdahl, P.S., Int. J. Mod. Phys. C 17, 1755 (2006).CrossRefGoogle Scholar
34. Tadmor, E.B., Ortiz, M., Phillips, R., Philos. Mag. A 73, 1529 (1996).CrossRefGoogle Scholar
35. Rudd, R.E., Broughton, J.Q., Phys. Status Solidi B 217, 251 (2000).3.0.CO;2-A>CrossRefGoogle Scholar
36. Rudd, R.E., Broughton, J.Q., Phys. Rev. B 72, 144104 (2005).CrossRefGoogle Scholar
37. Miller, R.E., Tadmor, E.B., Modell. Simul. Mater. Sci. Eng. 17, 053001 (2009).CrossRefGoogle Scholar
38. Moriarty, J.A., Benedict, L.X., Glosli, J.N., Hood, R.Q., Orlikowski, D.A., Patel, M.V., Soderlind, P., Streitz, F.H., Tang, M., Yang, L.H., J. Mater. Res. 21, 563 (2006).CrossRefGoogle Scholar
39. Arsenlis, A., Cai, W., Tang, M., Rhee, M., Oppelstrup, T., Hommes, G., Pierce, T.G., Bulatov, V.V., Modell. Simul. Mater. Sci. Eng. 15, 553 (2007).CrossRefGoogle Scholar
40. Hoover, W.G., Phys. Rev. Lett. 42, 1531 (1979).CrossRefGoogle Scholar
41. Holian, B.L., Straub, G.K., Phys. Rev. Lett. 43, 1598 (1979).CrossRefGoogle Scholar
42. Holian, B.L., Phys. Rev. A 37, 2562 (1988).CrossRefGoogle Scholar
43. Holian, B.L., Lomdahl, P.S., Science 280, 2085 (1998).CrossRefGoogle Scholar
44. Germann, T.C., Holian, B.L., Lomdahl, P.S., Ravelo, R., Phys. Rev. Lett. 84, 5351 (2000).CrossRefGoogle Scholar
45. Tanguy, D., Mareschal, M., Lomdahl, P.S., Germann, T.C., Holian, B.L., Ravelo, R., Phys. Rev. B 68, 144111 (2003).CrossRefGoogle Scholar
46. Germann, T.C., Tanguy, D., Holian, B.L., Lomdahl, P.S., Mareschal, M., Ravelo, R., Metall. Mater. Trans. 35A, 2609 (2004).CrossRefGoogle Scholar
47. Maillet, J.-B., Mareschal, M., Soulard, L., Ravelo, R., Lomdahl, P.S., Germann, T.C., Holian, B.L., Phys. Rev. E 63, 016121 (2000).CrossRefGoogle Scholar
48. Bringa, E.M., Cazamias, J.U., Erhart, P., Stolken, J., Tanushev, N., Wirth, B.D., Rudd, R.E., Caturla, M.J., J. Appl. Phys. 96, 3793 (2004).CrossRefGoogle Scholar
49. Ravelo, R., Holian, B.L., Germann, T.C., Lomdahl, P.S., Phys. Rev. B 70, 014103 (2004).CrossRefGoogle Scholar
50. Kubota, A., Reisman, D.B., Wolfer, W.G., Appl. Phys. Lett. 88, 241924 (2006).CrossRefGoogle Scholar
51. Kimminau, G., Erhart, P., Bringa, E.M., Remington, B., Wark, J.S., Phys. Rev. B 81, 092102 (2010).CrossRefGoogle Scholar
52. Bringa, E.M., Rosolankova, K., Rudd, R.E., Remington, B.A., Wark, J.S., Duchaineau, M., Kalantar, D.H., Belak, J., Nat. Mater. 5, 805 (2006).CrossRefGoogle Scholar
53. Bringa, E.M., Caro, A., Wang, Y., Victoria, M., McNaney, J.M., Remington, B.A., Smith, R.F., Torralva, B.R., van Swygenhoven, H., Science 309, 1838 (2005).CrossRefGoogle Scholar
54. Rudd, R.E., Mater. Sci. Forum 633634, 3 (2010).Google Scholar
55. Remington, B.A., Haan, S.W., Glendinning, S.G., Kilkenny, J.D., Munro, D.H., Wallace, R.J., Phys. Rev. Lett. 67, 3259 (1991).CrossRefGoogle Scholar
56. Fisher, A.C., Masters, N.D., Dixit, P., Benson, D.J., Koniges, A.E., Anderson, R.W., Gunney, B.T.N., Wang, P., Becker, R., J. Phys. Conf. Ser. 112 022027 (2008).CrossRefGoogle Scholar
57. Belak, J., J. Comput.-Aided Mater. Des. 5, 193 (1998).CrossRefGoogle Scholar
58. Rudd, R.E., Belak, J.F., Comput. Mater. Sci. 24, 148 (2002).CrossRefGoogle Scholar
59. Moriarty, J.A., Belak, J.F., Rudd, R.E., Soderlind, P., Streitz, F.H., Yang, L.H., J. Phys. Condens. Matter 14, 2825 (2002).CrossRefGoogle Scholar
60. Seppala, E.T., Belak, J., Rudd, R.E., Phys. Rev. B 69, 134101 (2004)CrossRefGoogle Scholar
61. Rudd, R.E., Philos. Mag. 89, 3133 (2009).CrossRefGoogle Scholar
62. Seppala, E.T., Belak, J., Rudd, R.E., Phys. Rev. Lett. 93, 245503 (2004)CrossRefGoogle Scholar
63. Seppala, E.T., Belak, J., Rudd, R.E., Phys. Rev. B 71, 064112 (2005).CrossRefGoogle Scholar
64. Rudd, R.E., Seppala, E.T., Dupuy, L.M., Belak, J., J. Comput.-Aided Mater. Des. 14, 425 (2007).CrossRefGoogle Scholar
65. Lubarda, V.A., Schneider, M.S., Kalantar, D.H., Remington, B.A., Meyers, M.A. Acta Mater. 52, 1397 (2004).CrossRefGoogle Scholar
66. Ahn, D.C., Sofronis, P., Minich, R., J. Mech. Phys. Solids 54, 735 (2006).CrossRefGoogle Scholar
67. Dremov, V., Petrovtsev, A., Sapozhnikov, P., Smirnova, M., Preston, D.L., Zocher, M.A., Phys. Rev. B 74, 144110 (2006).CrossRefGoogle Scholar
68. Srinivasan, S.G., Baskes, M.I., Wagner, G.J., J. Appl. Phys. 101, 043504 (2007).CrossRefGoogle Scholar
69. Luo, S.N., An, Q., Germann, T.C., Han, L.B., J. Appl. Phys. 106, 013502 (2009).CrossRefGoogle Scholar
70. Luo, S.N., Germann, T.C., Tonks, D.L., J. Appl. Phys. 106, 123518 (2009).CrossRefGoogle Scholar
71. Kadau, K., Germann, T.C., Lomdahl, P.S., Holian, B.L., Science 296, 1681 (2002).CrossRefGoogle Scholar
72. Hawreliak, J., Colvin, J.D., Eggert, J.H., Kalantar, D.H., Stölken, J.S., Davies, H.M., Germann, T.C., Holian, B.L., Kadau, K., Lomdahl, P.S., Higginbotham, A., Rosolankova, K., Sheppard, J., Wark, J.S., Phys. Rev. B 74, 184107 (2006).CrossRefGoogle Scholar
73. Hawreliak, J., Kalantar, D.H., Stölken, J.S., Remington, B.A., Lorenzana, H.E., Wark, J.S., Phys. Rev. B 78, 220101 (2008).CrossRefGoogle Scholar
74. Kadau, K., Germann, T.C., Lomdahl, P.S., Holian, B.L., Phys. Rev. B 72, 064120 (2005).CrossRefGoogle Scholar
75. Kadau, K., Germann, T.C., Lomdahl, P.S., Albers, R.C., Wark, J.S., Higginbotham, A., Holian, B.L., Phys. Rev. Lett. 98, 135701 (2007).CrossRefGoogle Scholar
76. Sakagami, H., Nishihara, K., Phys. Fluids B 2, 2715 (1990).CrossRefGoogle Scholar
77. Meyers, M.A., Remington, B.A., Maddox, B., Bringa, E.M., JOM 62, 24 (2010).CrossRefGoogle Scholar
78. Walsh, J.M., Bull. Am. Phys. Soc. 29, 28 (1954).Google Scholar
79. Bancroft, D., Peterson, E.L., Minshall, S., J. Appl. Phys. 27, 291 (1956).CrossRefGoogle Scholar
80. Jamieson, J.C., Lawson, A.W., J. Appl. Phys. 33, 776 (1962).CrossRefGoogle Scholar