Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-08T22:10:25.502Z Has data issue: false hasContentIssue false

Laser-Ablation Deposition and Characterization of Ferroelectric Capacitors for Nonvolatile Memories

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

An intense worldwide research-and-development effort has been undertaken during the last seven years with the objective of developing thin-film deposition techniques and materials-integration and processing strategies capable of realizing a commercially viable solid-state nonvolatile-ferroelectric-random-access-memory (NVFRAM) technology. Many laboratories around the world have focused their work on developing strategies for integrating submicron thin-film ferroelectric capacitors with the mature silicon-based transistor technology to yield capacitor-transistor-based memory architectures as schematically illustrated in Figure 1. This figure also shows the perovskite unit cell of a capacitor, based on a ferroelectric Pb(ZrxTi 1−xO3 (PZT) layer, and the variety of structural, chemical, electronic, and ionic interfaces that arise during the fabrication and integration of these metal-oxide hetero-structure capacitors on a Si substrate. Nonvolatile ferroelectric random-access memories exploit the capacity of the ferroelectric layer to be polarized in two opposite directions, which are used as the 0 and 1 binary stable states.

Type
Electroceramic Thin Films Part I: Processing
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Proc. 4th Int. Symp. Integrated Ferroelectrics (ISIF) (University of Colorado Press, Colorado Springs, 1992). 5th ISIF, ibid. (1993). 6th ISIF, ibid. (1995). 7th ISIF, Integrated Ferroelectrics 10 (1-4), 11 (1-4) (1995).Google Scholar
2.Kwok, C.K., Vijay, D.P., Desu, S.B., Parikh, N.R., and Hill, E.A., Proc. 4th Int. Symp. Integrated Ferroelectrics, edited by de Araujo, C.A. Paz (University of Colorado Press, Colorado Springs, 1992) p. 412.Google Scholar
3.Auciello, O., Gifford, K.D., and Kingon, A.I., Appl. Phys. Lett. 64 (1994) p. 2873.CrossRefGoogle Scholar
4.Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.J., Fork, D.K., Lee, J., and Safari, A., Appl. Phys. Lett. 61 (1992) p. 1537.CrossRefGoogle Scholar
5.Cheung, J.T., Morgan, P.E.D., and Neurgaonkar, R., Proc. 4th Int. Symp. Integrated Ferroelectrics (University of Colorado Press, 1992) p. 158.Google Scholar
6.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., and Fork, D.K., Appl. Phys. Lett. 63 (1993) p. 3592.CrossRefGoogle Scholar
7.Dat, R., Lichtenwalner, D.J., Auciello, O., and Kingon, A.I., Appl. Phys. Lett. 64 (1994) p. 2673.CrossRefGoogle Scholar
8.Al-Shareef, H.N., Auciello, O., and Kingon, A.I., in Science and Technology of Electroceramic Thin Films, NATO/ASI Book Series E, vol. 284, edited by Auciello, O. and Waser, R. (Kluwer Academic Publishers, 1994) p. 133.Google Scholar
9.Ramesh, R., Lee, J., Sands, T., Keramidas, V.G., and Auciello, O., Appl. Phys. Lett. 64 (1994) p. 2511.CrossRefGoogle Scholar
10.Smolensky, G.A. and Agronovskaya, A.I., Sov. Phys. Solid State 1 (1959) pp. 149 and 907. Also, J.F. Scott, F.M. Ross, C.A. Paz de Araujo, M.C. Scott, and M. Huffman, MRS Bulletin 21 (7) in press.Google Scholar
11.Paz de Araujo, C.A., Scott, J.F., and Taylor, G.W., eds., Ferroelectric Thin Films: Synthesis and Basic Properties (Gordon and Breach, 1996).Google Scholar
12.Chrisey, D.B. and Hubler, G.K., eds., Pulsed Laser Deposition of Thin Films (John Wiley & Sons, New York, 1994).Google Scholar
13.Lichtenwalner, D.J., Auciello, O., Dat, R., and Kingon, A.I., J. Appl. Phys. 74 (1994) p. 7497.CrossRefGoogle Scholar
14.Auciello, O., Emerick, J., Duarte, J., and Illingworth, A., J. Vac. Sci. Technol. A11 (1993) p. 267.CrossRefGoogle Scholar
15.Dat, R., Greer, J.A., and Tabat, M.D., J. Vac. Sci. Technol. A13 (1995) p. 1175.Google Scholar
16.Dat, R., Lichtenwalner, D.J., Auciello, O., and Kingon, A.I., Integrated Ferroelectrics 5 (1994) p. 275.CrossRefGoogle Scholar
17.Dat, R., Lichtenwalner, D.J., Auciello, O., and Kingon, A.I., Integrated Ferroelectrics 9 (1995) p. 309.CrossRefGoogle Scholar
18.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., and Fork, D.K., Appl. Phys. Lett. 63 (1993) p. 3592.CrossRefGoogle Scholar
19.Ramesh, R., Auciello, O., Keramidas, V.G., and Dat, R., in Science and Technology of Electroceramic Thin Films, NATO/ASI Book Series E, vol. 284, edited by Auciello, O. and Waser, R. (Kluwer Academic Publishers, The Netherlands, 1995) p. 1.Google Scholar
20.Dat, R., Lee, J.K., Auciello, O., and Kingon, A.I., Appl. Phys. Lett. 67 (1995) p. 572.CrossRefGoogle Scholar
21.Vijay, D.P., Desu, S.B., Nagata, M., Zhang, X., and Chen, T.C., in Ferroelectric Thin Films IV, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater Res. Soc. Symp. Proc. 361, Pittsburgh, 1995) p. 3.Google Scholar