Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T11:49:03.044Z Has data issue: false hasContentIssue false

InGaAs Metal Oxide Semiconductor Devices with Ga2O3(Gd2O3) High-κ Dielectrics for Science and Technology beyond Si CMOS

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

An overview is given on scientific and device advances for InGaAs metal oxide semiconductor heterostructures and inversion channel metal oxide semiconductor field-effect transistors (MOSFETs), with emphasis on results using ultrahigh vacuum-deposited Ga2O3(Gd2O3) [GGO] as high-κ dielectrics. Regardless of the approaches used to deposit high-κ dielectrics on InGaAs, critical material and electrical parameters of fabricating inversion channel InGaAs MOSFETs must be ready for complementary MOS technology beyond the 16-nm node, and some of these parameters have been achieved. These parameters include low interfacial density of states; low electrical leakage currents; high-temperature (800–900°C) thermal stability for high-κ dielectrics/InGaAs heterostructures, where the amorphous oxide structure and atomically smooth and sharp interfaces are retained; and oxide scalability with a capacitance equivalent thickness of ≤1 nm. Interfacial chemical properties and band parameters, which are important for device design in the high κs/InGaAs, have been thoroughly studied. Representative enhancement-mode InGaAs MOSFETs are compared and correlated with the interfacial structures. Deposition methods and electrical characteristics of high-κ dielectrics on InGaA are discussed. The inversion channel InGaAs MOSFETs of 0.4–1.0 μm gate length have exhibited excellent device performance in terms of drain current and transconductance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chau, R., Doyle, B., Datta, S., Kavalieros, J., Zhang, K., Nat. Mater. 6, 810 (2007).CrossRefGoogle Scholar
2Wilmsen, C.W., Physics and Chemistry of III–V Compound Semiconductor Interface (Plenum Press, New York, 1985).CrossRefGoogle Scholar
3Hong, M.W., Kwo, J.R., Tsai, P.C., Chang, Y.C., Huang, M.L., Chen, C.P., Lin, T.D., Jpn. J. Appl. Phys., Part 1 46, 3167 (2007).CrossRefGoogle Scholar
4Hong, M., Lee, W.C., Huang, M.L., Chang, Y.C., Lin, T.D., Lee, Y.J., Kwo, J., Hsu, C.H., Lee, H.Y., Thin Solid Films, 515, 5581 (2007).CrossRefGoogle Scholar
5Hong, M., Mannaerts, J.P., Bowers, J.E., Kwo, J., Passlack, M., Hwang, W.-Y., Tu, L.W., J. Cryst. Growth, 175, 422 (1997).CrossRefGoogle Scholar
6Kwo, J., Murphy, D.W., Hong, M., Opila, R.L., Mannaerts, J.P., Masaitis, R.L., Sergent, A.M., Appl. Phys. Lett. 75, 1116 (1999).CrossRefGoogle Scholar
7Hong, M., Kwo, J., Kortan, A.R., Mannaerts, J.P., Sergent, A.M., Science, 283, 1897 (1999).CrossRefGoogle Scholar
8Kwo, J., Hong, M., Busch, B., Muller, D.A., Chabal, Y.J., Kortan, A.R., Mannaerts, J.P., Yang, B., Ye, P., Gossmann, H., Sergent, A.M., Ng, K.K., Bude, J., Schulte, W.H., Garfunkel, E., Gustafsson, T., J. Cryst. Growth, 251, 645 (2003).CrossRefGoogle Scholar
9Ren, F., Hong, M., Hobson, W.S., Kuo, J.M., Lothian, J.R., Mannaerts, J.P., Kwo, J., Chen, Y.K., Cho, A.Y., IEEE International Electron Devices Meeting, IEDM Tech. Dig. 943 (1996).Google Scholar
10Ren, F., Hong, M., Hobson, W.S., Kuo, J.M., Lothian, J.R., Mannaerts, J.P., Kwo, J., Chu, S.N.G., Chen, Y.K., Cho, A.Y., Solid-State Electron. 41 (11), 1751 (1997).CrossRefGoogle Scholar
11Wang, Y.C., Hong, M., Kuo, J.M., Mannaerts, J.P., Kwo, J., Tsai, H.S., Krajewski, J.J., Weiner, J.S., Chen, Y.K., Cho, A.Y., Mater. Res. Soc. Symp. Proc. 573, 219 (1999).CrossRefGoogle Scholar
12Ye, P.D., Wilk, G.D., Yang, B., Kwo, J., Chu, S.N.G., Nakahara, S., Gossmann, H.-J.L., Mannaerts, J.P., Hong, M., Ng, K.K., Bude, J., Appl. Phys. Lett. 83, 180 (2003).CrossRefGoogle Scholar
13Huang, M.L., Chang, Y.C., Chang, C.H., Lee, Y.J., Chang, P., Kwo, J., Wu, T.B., Hong, M., Appl. Phys. Lett. 87, 252104 (2005).CrossRefGoogle Scholar
14Huang, M.L., Chang, Y.C., Chang, C.H., Lin, T.D., Kwo, J., Wu, T.B., Hong, M., Appl. Phys. Lett. 89, 012903 (2006).CrossRefGoogle Scholar
15Chang, Y.C., Huang, M.L., Lee, K.Y., Lee, Y.J., Lin, T.D., Hong, M., Kwo, J., Lay, T.S., Liao, C.C., Cheng, K.Y., Appl. Phys. Lett. 92, 072901 (2008).CrossRefGoogle Scholar
16Lee, K.Y., Lee, Y.J., Chang, P., Huang, M.L., Chang, Y.C., Hong, M., Kwo, J., Appl. Phys. Lett. 92, 252908 (2008).CrossRefGoogle Scholar
17Xuan, Y., Wu, Y.Q., Shen, T., Yang, T., Ye, P.D., IEEE International Electron Devices Meeting, IEDM Tech. Dig. 637 (2007).Google Scholar
18Noh, D.Y., Hwu, Y., Kim, H.K., Hong, M., Phys. Rev. B, 51, 4441 (1995).CrossRefGoogle Scholar
19Hong, M., Marcus, M.A., Kwo, J., Mannaerts, J.P., Sergent, A.M., Chou, L.J., Hsieh, K.C., Cheng, K.Y., J. Vac. Sci. Technol. B, 16, 1395 (1998).CrossRefGoogle Scholar
20Kraut, E.A., Grant, R.W., Waldrop, J.R., Kowalczyk, S.P., Phys. Rev. Lett. 44, 1620 (1980).CrossRefGoogle Scholar
21Kwo, J., Murphy, D.W., Hong, M., Mannaerts, J.P., Opila, R.L., Masaitis, R.L., Sergent, A.M., J. Vac. Sci. Technol. B, 17, 1294 (1999).CrossRefGoogle Scholar
22Hong, M., Lu, Z.H., Kwo, J., Kortan, A.R., Mannaerts, J.P., Krajewski, J.J., Hsieh, K.C., Chou, L.J., Cheng, K.Y., Appl. Phys. Lett. 76, 312 (2000).CrossRefGoogle Scholar
23Shiu, K.H., Chiang, C.H., Lee, Y.J., Lee, W.C., Chang, P., Tung, L.T., Hong, M., Kwo, J., Tsai, W., J. Vac. Sci. Technol. B, 26, 1132 (2008).CrossRefGoogle Scholar
24Shiu, K.H., Chiang, T.H., Chang, P., Tung, L.T., Hong, M., Kwo, J., Tsai, W., Appl. Phys. Lett. 92, 172904 (2008).CrossRefGoogle Scholar
25Huang, Y.L., Chang, P., Yang, Z.K., Lee, Y.J., Lee, H.Y., Liu, H.J., Kwo, J., Mannaerts, J.P., Hong, M., Appl. Phys. Lett. 86, 191905 (2005).CrossRefGoogle Scholar
26Chen, C.P., Lee, Y.J., Chang, Y.C., Yang, Z.K., Hong, M., Kwo, J., Lee, H.Y., Lay, T.S., J. Appl. Phys. 100, 104502 (2006).CrossRefGoogle Scholar
27Kwo, J., Hong, M., Mannaerts, J.P., Wu, Y.D., Lee, Q.Y., Yang, B., Gustafsson, T., Mater. Res. Soc. Symp. Proc. 811, E1.12 (2004).CrossRefGoogle Scholar
28Koveshnikov, S., Tsai, W., Ok, I., Lee, J.C., Torkanov, V., Yakimov, M., Oktyabrsky, S., Appl. Phys. Lett. 88, 022106 (2006).CrossRefGoogle Scholar
29Goel, N., Majhi, P., Chui, C.O., Tsai, W., Choi, D., Harris, J.S., Appl. Phys. Lett. 89, 163517 (2006).CrossRefGoogle Scholar
30Xuan, Y., Lin, H.C., Ye, P.D., IEEE Trans. Electron Devices, 54, 1811 (2007).CrossRefGoogle Scholar
31Jin, H., Oh, S.K., Kang, H.J., Tougaard, S., J. Appl. Phys. 100, 083713 (2006).CrossRefGoogle Scholar
32Huang, M.L., Chang, Y.C., Chang, Y.H., Lin, T.D., Kwo, J., Hong, M., Appl. Phys. Lett. 94, 052106 (2009).CrossRefGoogle Scholar
33Lay, T.S., Hong, M., Kwo, J., Mannaerts, J.P., Hung, W.H., Huang, D.J., Solid-State Electron. 45, 1679 (2001).CrossRefGoogle Scholar
34Ren, F., Kuo, J.M., Hong, M., Hobson, W.S., Lothian, J.R., Lin, J., Tseng, W.S., Mannaerts, J.P., Kwo, J., Chu, S.N.G., Chen, Y.K., Cho, A.Y., IEEE Electron Device Lett. 19 (8), 309 (1998).CrossRefGoogle Scholar
35Xuan, Y., Wu, Y.Q., Ye, P.D., IEEE Electron Device Lett. 29, 294 (2008).CrossRefGoogle Scholar
36Lin, T.D., Chiu, H.C., Chang, P., Tung, L.T., Chen, C.P., Hong, M., Kwo, J., Tsai, W., Wang, Y.C., Appl. Phys. Lett. 93, 033516 (2008).CrossRefGoogle Scholar
37Chiu, H.C., Lin, T.D., Chang, P., Lee, W.C., Chiang, C.H., Kwo, J., Lin, Y.S., Hsu, Shawn S.H., Tsai, W., Hong, M., International Symposium on VLSI Technology, Systems and Applications, 2009, p. 141.Google Scholar
38Hill, R.J.W., Moran, D.A.J., Li, X., Zhou, H., Macintyre, D., Thoms, S., Asenov, A., Zurcher, P., Rajagopalan, K., Abrokwah, J., Droopad, R., Passlack, M., Thayne, L.G., IEEE Electron Device Lett. 28, 1080 (2007).CrossRefGoogle Scholar
39Sun, Y., Kiewra, E.W., Koester, S.J., Ruiz, N., Callegari, A., Fogel, K.E., Sadana, D.K., Fompeyrine, J., Webb, D.J., Locquet, J.P., Sousa, M., Germann, R., Shiu, K.T., Forrest, S.R., IEEE Electron Device Lett. 28, 473 (2007).CrossRefGoogle Scholar
40Chiu, H.C., Tung, L.T., Chang, Y.H., Lee, Y.J., Chang, C.C., Kwo, J., Hong, M., Appl. Phys. Lett. 93, 202903 (2008).CrossRefGoogle Scholar
41de Souza, J.P., Kiewra, E., Sun, Y., Callegari, A., Sadana, D.K., Shahidi, G., Webb, D.J., Fompeyrine, J., Germann, R., Rossel, C., Marchiori, C., Appl. Phys. Lett. 92, 153508 (2008).CrossRefGoogle Scholar
42Chin, H.C., Zhu, M., Samudra, G.S., Yeo, Y.C., J. Electrochem. Soc. 155, H464 (2008).CrossRefGoogle Scholar
43Chen, C.P., Lin, T.D., Lee, Y.J., Chang, Y.C., Hong, M., Kwo, J., Solid-State Electron. 52, 1615 (2008).CrossRefGoogle Scholar
44Wang, Y.C., Hong, M., Kuo, J.M., Mannaerts, J.P., Tsai, H.S., Kwo, J., Krajewski, J.J., Chen, Y.K., Cho, A.Y., Electron. Lett. 35, 667 (1999).CrossRefGoogle Scholar
45Hong, M., Baillargeon, J.N., Kwo, J., Mannaerts, J.P., Cho, A.Y., Proc. 2000 IEEE Int. Symp. Compd. Semicond. 345 (2000).Google Scholar