Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T14:42:19.607Z Has data issue: false hasContentIssue false

High-voltage normally OFF GaN power transistors on SiC and Si substrates

Published online by Cambridge University Press:  08 May 2015

Oliver Hilt
Affiliation:
Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Germany; oliver.hilt@fbh-berlin.de
Eldad Bahat-Treidel
Affiliation:
Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Germany; eldad.bahat-treidel@fbh-berlin.de
Arne Knauer
Affiliation:
Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Germany; arne.knauer@fbh-berlin.de
Frank Brunner
Affiliation:
Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Germany; frank.brunner@fbh-berlin.de
Rimma Zhytnytska
Affiliation:
Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Germany; rimma-zhytnyska@fbh-berlin.de
Joachim Würfl
Affiliation:
Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Germany; joachim.wuerfl@fbh-berlin.de
Get access

Abstract

Transistors with 600 V blocking capability and low switching losses are needed for converting one-phase 230 V mains voltage to lower voltage levels in switch-mode power supplies. The transistors operate as a switch and have to block the system voltage with minimized leakage currents in the OFF-state and have to conduct the current in the ON-state with minimized ON-state resistance. Additionally, any switching losses inside the transistor during the transitions in-between OFF and ON-states need to be minimized for efficient power-converting systems. Efficient high-voltage switching using gallium nitride (GaN)-based power transistors requires excellent material properties in the GaN/AlGaN epitaxial layers in conjunction with optimized process modules and device layout. In the example presented here, GaN buffer compositions and device geometry have been optimized to obtain very low vertical and lateral OFF-state leakage currents at 600 V drain bias and to enable a fast device turn-on with only a minor increase in dynamic ON-state resistance. The developed technology was applied to GaN layers grown on SiC and Si substrates to allow a direct comparison of both static and dynamic device parameters. By implementing a p-type GaN gate, normally OFF operation was realized for 70 mΩ/600 V transistors on both substrates. The new GaN-based devices outperform established Si-based superjunction metal oxide semiconductor field-effect transistors in terms of gate charge and switching energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moens, P., Liu, C., Banerjee, A., Vanmeerbeek, P., Coppens, P., Ziad, H., Constant, A., Li, Z., De Vleeschouwer, H., RoigGuitart, J., Gassot, P., Bauwens, F., De Backer, E., Padmanabhan, B., Salih, A., Parsey, J., Tack, M., Proc. Int. Symp. Power Semicond. Devices ICs (2014), p. 374.Google Scholar
De Jaeger, B., Van Hove, M., Wellekens, D., Kang, X., Liang, H., Mannaert, G., Geens, K., Decoutere, S., Proc. Int. Symp. Power Semicond. Devices ICs (2012), p. 49.Google Scholar
Ikeda, N., Niiyama, Y., Kambayashi, H., Sato, Y., Nomura, T., Kato, S., Yoshida, S., Proc. IEEE 98 (7), (2010), p. 1151.CrossRefGoogle Scholar
Deboy, G., März, M., Stengl, J.-P., Strack, H., Tihanyi, J., Weber, H., IEDM Tech. Dig. 683 (1998).Google Scholar
Hilt, O., Zhytnytska, R., Böcker, J., Bahat-Treidel, E., Brunner, F., Knauer, A., Dieckerhoff, S., Würfl, J., “70 mΩ/600 V Normally-off GaN Transistors on SiC and Si SubstratesProc. Int. Symp. Power Semicond. Devices ICs (ISPSD), Hong Kong (forthcoming).Google Scholar
Hilt, O., Kotara, P., Brunner, F., Knauer, A., Zhytnytska, R., Würfl, J., IEEE Trans. Electron Devices 60 (10), 3084 (2013).CrossRefGoogle Scholar
Saito, J.W., Takada, Y., Kuraguchi, M., Tsuda, K., Omura, I., IEEE Trans. Electron Devices 53 (2), 356 (2006).CrossRefGoogle Scholar
Cai, Y., Zhou, Y., Lau, K.M., Chen, K.J., IEEE Trans. Electron Devices 53, 2207 (2006).CrossRefGoogle Scholar
Sun, X., Saadat, O.I., Chang-Liao, K.S., Palacios, T., Cui, S., Ma, T.P., Appl. Phys. Lett. 102, 103504 (2013).CrossRefGoogle Scholar
Liu, Z., Huang, X., Lee, F.C., Li, Q., IEEE Trans. Power Electron. 29 (4), 1977 (2014).Google Scholar
Hilt, O., Knauer, A., Brunner, F., Bahat-Treidel, E., Würfl, J., Proc. Int. Symp. Power Semicond. Devices ICs (2010), p. 347.Google Scholar
Uemoto, Y., Hikita, M., Ueno, H., Matsuo, H., Ishida, H., Yanagihara, M., Ueda, T., Tanaka, T., Ueda, D., IEEE Trans. Electron Devices 54 (12), 3393 (2007).CrossRefGoogle Scholar
Hwang, I., Kim, J., Choi, H.S., Choi, H., Lee, J., Kim, K.Y., Park, J.-B., Lee, J.C., Ha, J., Oh, J., Shin, J., Chung, U.-I., IEEE Electron Device Lett. 34 (2), 202 (2013).CrossRefGoogle Scholar
Bahat-Treidel, E., Hilt, O., Brunner, F., Würfl, J., Tränkle, G., IEEE Trans. Electron Devices 55 (12), 3354 (2008).CrossRefGoogle Scholar
Hilt, O., Bahat-Treidel, E., Brunner, F., Knauer, A., Zhytnytska, R., Kotara, P., Würfl, J., ECS Trans. 58 (4), 145 (2013).CrossRefGoogle Scholar
Jin, D., del Alamo, J.A., Microelectron. Reliab. 52 (12), 2875 (2012).CrossRefGoogle Scholar
Hilt, O., Bahat-Treidel, E., Cho, E., Singwald, S., Würfl, J., in Proc. Int. Symp. Power Semicond. Devices ICs (2012), p. 345.Google Scholar
Uren, M.J., Silvestri, M., Cäsar, M., Hurkx, G.A.M., Croon, J.A., Šonský, J., Kuball, M., IEEE Electron Device Lett. 35 (3), 327 (2014).CrossRefGoogle Scholar
Tanaka, K., Ishida, M., Ueda, T., Tanaka, T., Jpn. J. Appl. Phys. 52, 04CF07, (2013).Google Scholar
Würfl, J., Hilt, O., Bahat-Treidel, E., Zhytnytska, R., Klein, K., Kotara, P., Brunner, F., Knauer, A., Krüger, O., Weyers, M., Tränkle, G., ECS Trans. 52 (1), 979 (2013).CrossRefGoogle Scholar