Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T00:37:50.126Z Has data issue: false hasContentIssue false

High-Temperature Applications of Intermetallic Compounds

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

One of the greatest challenges currently facing the materials community is the need to develop a new generation of materials to replace Ni-based superalloys in the hot sections of gas-turbine engines for aircraft-propulsion systems. The present alloys, which have a Ni-based solid-solution matrix surrounding Ni3Al-based precipitates, are currently used at temperatures exceeding 1100°C, which is over 80% of the absolute melting temperature. Since Ni3Al melts at 1395°C and Ni at 1453°C, it is clear that significantly higher operating temperatures, with the attendant improvements in efficiency and thrust-to-weight ratio, can only be attained by the development of an entirely new materials system. This problem is a primary reason for the current high level of interest in high-temperature intermetallic compounds.

The development of such a material system has important implications for national defense and for spin-offs to civilian technology, as well as for the economy and balance of payments. Obviously it would be a boon to any economy to have these new materials developed domestically, as was the case in the United States for the currently used single-crystal technology applied to Ni-based superalloys. As an example, the aerospace industry is one area where the United States is still the undisputed world leader, with net exports of $29 billion in 1989, twice that of any other U.S. industry.

Type
Applications of Intermetallic Compounds
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Backman, D.G. and Williams, J.C., Science 255 (1992) p. 1082.CrossRefGoogle Scholar
2.Darolia, R., JOM 43 (1991) p. 44.CrossRefGoogle Scholar
3.Fleischer, R.L., in High Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, 1987) p. 405.Google Scholar
4.Anton, D.L. and Shah, D.M., “Development Potential of Advanced Intermetallic Materials,” final report to Air Force, contract F33615-87-C-5214, Project 2420 (1990).Google Scholar
5.Darolia, R., Lahrman, D.F., Field, R.D., Dobbs, J.R., Chang, K-M., Goldman, E.H., and Konitzer, D.G., in Ordered Intermetallics-Physical Metallurgy and Mechanical Behavior, vol. 213, edited by Liu, C.T., Calm, R.W., and Sauthoff, G. (NATO ASI Series E: Applied Sciences, Kluwer Academic Publishers, 1992) p. 679.CrossRefGoogle Scholar
6.Miracle, D.B. and Darolia, R., in Intermetallic Compounds: Principals and Practice, Vol. 2, edited by Westbrook, J.H. and Fleischer, R.L., (John Wiley and Sons, New York, 1993) p. 53.Google Scholar
7.Darolia, R., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V. (Minerals, Metals, and Materials Society, Warrendale, PA, 1993) p. 495.Google Scholar
8.Lahrman, D.F., Field, R.D., and Darolia, R., in High-Temperature Ordered Intermetallics Alloys IV, edited by Johnson, L., Stiegler, J.O., and Pope, D.P. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, 1991) p. 603.Google Scholar
9.Wasilewski, R.J., Butler, S.R., and Hanlon, J.E., Met. Soc. AIME 239 (1967) p. 1357.Google Scholar
10.Field, R.D., Darolia, R., Lahrman, D.F., and Freeman, A.J. (AFOSR contract F49620-88-C-0052, final report, 1991).Google Scholar
11.Clapp, P.C., Rubins, M.J., Charpenay, S., Rifkin, J.A., and Yu, Z.Z., in High Temperature Ordered Intermetallics Alloys III, edited by Liu, C.T., Taub, A.I., Stoloff, N.S., and Koch, C.C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, 1989) p. 29.Google Scholar
12.Rao, S.I., Woodward, C., and Parthasarathy, T.A., in High-Temperature Ordered Intermetallics Alloys IV, edited by Johnson, L., Stiegler, J.O., and Pope, D.P. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, 1991) p. 125.Google Scholar
13.Fu, C.L. and Yoo, M.H., in High-Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L., Stiegler, J.O., and Pope, D.P. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, 1991) p. 667.Google Scholar
14.Hong, T. and Freeman, A.J., Phys. Rev. B 43 (1991) p. 6446.CrossRefGoogle Scholar
15.Hong, T. and Freeman, A.J., J. Mater. Res. 6 (1991) p. 330.CrossRefGoogle Scholar
16.Field, R.D., Lahrman, D.F., and Darolia, R., Acta Metall. 39 (1991) p. 2961.CrossRefGoogle Scholar
17.Darolia, R., Lahrman, D.F., and Field, R.D., Scripta Metall. 26 (1992) p. 1007.CrossRefGoogle Scholar
18.Field, R.D., Lahrman, D.F., and Darolia, R., in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J.D., and Yoo, M.H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, 1993) p. 423.Google Scholar
19.Rudy, M. and Sauthoff, G., Mater. Sci. Eng. 81 (1986) p. 525.CrossRefGoogle Scholar
20.Rudy, M. and Sauthoff, G., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C.C., Liu, C.T., and Stoloff, N.S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, 1989) p. 327.Google Scholar
21.Sauthoff, G., Z. Metallkde 80 (1989) p. 337.Google Scholar
22.Polvani, R.S., Tzeng, W.S., and Strutt, P.R., Metall. Trans. 7A (1976) p. 33.CrossRefGoogle Scholar
23.Darolia, R., Acta Metall. Sinica 8 (1995) p. 625.Google Scholar
24.Barrett, C.A., Oxidation of Metals 30 (1988) p. 361.CrossRefGoogle Scholar
25.Smialek, J.L. and Meier, G.H., in Superalloys II, edited by Sims, C.T., Stoloff, N.S., and Hagel, W.C (John Wiley and Sons, 1987) p. 293.Google Scholar
26.Doychak, J., Smialek, J.L., and Barrett, C.A., in Oxidation of High-temperature Intermetallics, edited by Grobstien, T. and Doychak, J. (Minerals, Metals, and Materials Society, Warrendale, PA, 1989) p. 41.Google Scholar
27.Wade, R.K. and Petrovic, J.J., J. Am. Ceram. Soc. 73 (1990) p. 1682.Google Scholar
28.Aiken, R.M. Jr., Scripta Metall. Mater. 26 (1990) p. 1025.CrossRefGoogle Scholar
29.Sadananda, S., Feng, C.R., Jones, K., and Petrovic, J.J., Mater. Sci. Eng. A155 (1955) p. 1671.Google Scholar
30.Vasudevan, A.K. and Petrovic, J.J., Mater. Sci. Eng. A155 (1992) p. 1.CrossRefGoogle Scholar
31.Petrovic, J.J. and Vasudevan, A.K., in High Temperature Silicides and Refractory Alloys, edited by Briant, C.L., Petrovic, J.J., Bewlay, B.P., Vasudevan, A.K., and Lipsitt, H.A. (Mater. Res. Soc. Symp. Proc. 322, Pittsburgh, 1994) p. 3.Google Scholar
32.Petrovic, J.J., MRS Bulletin XVIII(7) (1993) p. 35.CrossRefGoogle Scholar
33.Kumar, K.S. and Liu, C.T., JOM (June 1993) p. 28.CrossRefGoogle Scholar
34.Boettinger, W.J., Perepezko, J.H., and Frankwicz, P.S., Mater. Sci. Eng. A155 (1992) p. 33.CrossRefGoogle Scholar
35.Umakoshi, Y., Sakagami, T., Hirano, T., and Yamane, T.Acta Metall. Mater. 38 (1990) p. 909.CrossRefGoogle Scholar
36.Kimura, K., Nakamura, M., and Hirano, T., J. Mater. Sci. 25 (1990) p. 2487.CrossRefGoogle Scholar
37.Mitchell, T.E. and Maloy, S.A., in Critical Issues in the Development of High Temperature Structural Materials, edited by Stoloff, N.S., Duquette, D.J., and Giamei, A.F. (Minerals, Metals, and Materials Society, Warrendale, PA, 1993) p. 279.Google Scholar
38.Maloy, S.A., Mitchell, T.E., Petrovic, J.J., Heuer, A.H., and Lewandowski, J.J., in High Temperature Silicides and Refractory Alloys, edited by Briant, C.L., Petrovic, J.J., Bewlay, B.P., Vasudevan, A.K., and Lipsitt, H.A. (Mater. Res. Soc. Symp. Proc. 322, Pittsburgh, 1994) p. 21.Google Scholar
39.Ito, K., Inui, H., Shirai, Y., and Yamaguchi, M., Philos. Mag. A 72 (1995) p. 1075.CrossRefGoogle Scholar
40.Lemkey, F.D., Cline, H.E., and McLean, M., eds., In Situ Composites IV (Elsevier Science Publishing Co., Inc., New York, 1982).Google Scholar
41.Woodford, D.A., JOM 42 (1990) p. 50.CrossRefGoogle Scholar
42.Subramanian, P.R., Mendiratta, M.G., and Dimiduk, D.M., JOM 48 (1996) p. 33.CrossRefGoogle Scholar
43.Jackson, M.R., Bewley, B.P., Rowe, R.G., Skelly, D.W., and Lipsitt, H.A., JOM 48 (1996) p. 39.CrossRefGoogle Scholar
44.Mendiratta, M.G., Lewandowski, J.J., and Dimiduk, D.M., Metall. Trans. A 22A (1991) p. 1573.CrossRefGoogle Scholar
45.Mendiratta, M.G. and Dimiduk, D.M., Metall. Trans. A 24A (1993) p. 501.CrossRefGoogle Scholar