Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T03:04:08.998Z Has data issue: false hasContentIssue false

GaN-Based Light-Emitting Diodes on Selectively Grown Semipolar Crystal Facets

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In this article, we briefly review a particular approach to fabricate light-emitting diode (LED) structures on the semipolar side facets of triangular GaN stripes grown by selective area epitaxy. This approach enables a significant reduction of the internal piezoelectric fields in the LED's active area, while still maintaining the well-established c-direction as the main epitaxial growth direction for GaN-based devices on large area substrates. For the latter, these internal fields are responsible for the lower efficiency of GaN-based LEDs in the longer (green) wavelength range. The reduced internal fields of such semipolar LEDs can be directly determined by photoluminescence (PL) investigations on pre-biased LED structures and further confirmed by time-resolved PL studies. The epitaxial growth behavior is strongly facet-dependent, leading to different surface flatnesses on different semipolar facets formed by this procedure and different – indium incorporation efficiencies. An increased indium uptake on semipolar {1101} facets as compared to conventional c-plane layers can help to shift the LED emission to longer wavelengths near 500 nm, despite the significantly reduced field-dependent Stark shift, which helps to reach the green wavelength range in polar LEDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Takeuchi, T., Amano, H., Akasaki, I., Jpn. J. Appl. Phys. 39, 413 (2000).CrossRefGoogle Scholar
2Takeuchi, T., Lester, S., Basile, D., Girolami, G., Twist, R., Mertz, F., Wong, M., Schneider, R., Amano, H., Akasaki, I., IPAP Conf. Series 1, 137 (2000); Proc. Int. Workshop on Nitride Semiconductors.Google Scholar
3Nishizuka, K., Funato, M., Kawakami, Y., Fujita, S., Narukawa, Y., Mukai, T., Appl. Phys. Lett. 85, 3122 (2004).CrossRefGoogle Scholar
4Khatsevich, S., Rich, D.H., Zhang, X., Zhou, W., Dapkus, P.D., J. Appl. Phys. 95, 1832 (2004).CrossRefGoogle Scholar
5Neubert, B., Habel, F., Brückner, P., Scholz, F., Riemann, T., Christen, J., Mater. Res. Symp. Proc. 831, E11.32.1 (2005).Google Scholar
6Zhang, X., Dapkus, P.D., Rich, D.H., Kim, I., Kobayashi, J.T., Kobayashi, N.P., J. Electron. Mat. 29, 10 (2000).CrossRefGoogle Scholar
7Hertkorn, J., Brückner, P., Thapa, S.B., Wunderer, T., Scholz, F., Feneberg, M., Thonke, K., Sauer, R., Beer, M., Zweck, J., J. Cryst. Growth 308, 30 (2007).CrossRefGoogle Scholar
8Wunderer, T., Brückner, P., Neubert, B., Scholz, F., Feneberg, M., Lipski, F., Schirra, M., Thonke, K., Appl. Phys. Lett. 89, 041121 (2006).CrossRefGoogle Scholar
9Funato, M., Kondou, T., Hayashi, K., Nishiura, S., Ueda, M., Kawakami, Y., Narukawa, Y., Mukai, T., Appl. Phys. Express 1, 011106 (2008).CrossRefGoogle Scholar
10Off, J., Kniest, A., Vorbeck, C., Scholz, F., Ambacher, O., J. Crystal Growth 195, 286 (1998).CrossRefGoogle Scholar
11Feneberg, M., Thonke, K., J. Phys.: Condens. Matter 19, 403201 (2007).Google Scholar
12Feneberg, M., Lipski, F., Schirra, M., Sauer, R., Thonke, K., Wunderer, T., Brückner, P., Scholz, F., Phys. Status Solidi C 5, 2089 (2008).CrossRefGoogle Scholar
13Thrush, E.J., Stagg, J.P., Gibbon, M.A., Mallard, R.E., Hamilton, B., Jowett, J.M., Allen, E.M., Mater. Sci. Eng. B 21, 130 (1993).CrossRefGoogle Scholar
14Neubert, B., “GaInN/GaN LEDs auf semipolaren Seitenfacetten mittels selektiver Epitaxie hergestellter GaN-Streifen”, PhD thesis, Universität Ulm, 2008.Google Scholar
15Neubert, B., Brückner, P., Habel, F., Scholz, F., Riemann, T., Christen, J., Beer, M., Zweck, J., Appl. Phys. Lett. 87, 182111 (2005).CrossRefGoogle Scholar
16Hiramatsu, K., Nishiyama, K., Motogaito, A., Miyake, H., Iyechika, Y., Maeda, T., Phys. Status Solidi A 176, 535 (1999).3.0.CO;2-I>CrossRefGoogle Scholar
17Nishizuka, K., Funato, M., Kawakami, Y., Narukawa, Y., Mukai, T., Appl. Phys. Lett. 87, 231901 (2005).CrossRefGoogle Scholar
18Neubert, B., Habel, F., Brückner, P., Scholz, F., Schirra, M., Feneberg, M., Thonke, K., Riemann, T., Christen, J., Beer, M., Zweck, J., Moutchnik, G., Jetter, M., Phys. Status Solidi C 3, 1587 (2006).CrossRefGoogle Scholar
19Neubert, B., Wunderer, T., Brückner, P., Scholz, F., Feneberg, M., Lipski, F., Schirra, M., Thonke, K., J. Cryst. Growth 298, 706 (2007).CrossRefGoogle Scholar
20Wunderer, T., Lipski, F., Hertkorn, J., Brückner, P., Scholz, F., Feneberg, M., Schirra, M., Thonke, K., Chuvilin, A., Kaiser, U., Phys. Status Solidi C 5, 2059 (2008).CrossRefGoogle Scholar
21Aoki, M., Yamane, H., Shimada, M., Sarayama, S., Iwata, H., Disalvo, F.J., Jpn. J. Appl. Phys. 42, 5445 (2003).CrossRefGoogle Scholar
22Wunderer, T., Hertkorn, J., Lipski, F., Brückner, P., Feneberg, M., Schirra, M., Thonke, K., Knoke, I., Meissner, E., Chuvilin, A., Kaiser, U., Scholz, F., Proc. of SPIE 6894, 68940V (2008); Gallium Nitride Materials, Devices III, H. Morkoç, C.W. Litton, J.-I. Chyi, Y. Nanishi, E. Yoon, Eds.CrossRefGoogle Scholar
23Bonanno, P.L., O'Malley, S.M., Sirenko, A.A., Kazimirov, A., Cai, Z., Wunderer, T., Brückner, P., Scholz, F., Appl. Phys. Lett. 92, 123106 (2008).CrossRefGoogle Scholar
24Northrup, J.E., Romano, L.T., Neugebauer, J., Appl. Phys.Lett. 74, 2319 (1999).CrossRefGoogle Scholar
25Scholz, F., Ottenwälder, D., Eckel, M., Wild, M., Frankowsky, G., Wacker, T., Hangleiter, A., J. Cryst. Growth 145, 242 (1994).CrossRefGoogle Scholar
26Takeuchi, T., Wetzel, Ch., Yamaguchi, Sh., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y., Yamada, N., Appl. Phys. Lett. 73, 1691 (1998).CrossRefGoogle Scholar
27Sun, Yue Jun, Brandt, O., Cronenberg, S., Dhar, S., Grahn, H.T., Ploog, K.H., Waltereit, P., Speck, J.S., Phys. Rev. B 73, 041306(R) (2003).CrossRefGoogle Scholar
28Wunderer, T., Brückner, P., Hertkorn, J., Scholz, F., Beirne, G.J., Jetter, M., Michler, P., Feneberg, M., Thonke, K., Appl. Phys. Lett. 90, 171123 (2007).CrossRefGoogle Scholar
29Scholz, F., Prog. Cryst. Growth Charact. 35, 243 (1997).CrossRefGoogle Scholar
30Gotoh, H., Tawara, T., Kobayashi, Y., Kobayashi, N., Saitoh, T., Appl. Phys. Lett. 83, 4791 (2003).CrossRefGoogle Scholar
31Feneberg, M., Lipski, F., Sauer, R., Thonke, K., Wunderer, T., Neubert, B., Brückner, P., Scholz, F., Appl. Phys. Lett. 86, 242112 (2006).CrossRefGoogle Scholar
32Fuhrmann, D., Rossow, U., Netzel, C., Bremers, H., Ade, G., Hinze, P., Hangleiter, A., Phys. Status Solidi C 3, 1966 (2006).CrossRefGoogle Scholar