Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T16:40:09.766Z Has data issue: false hasContentIssue false

Electron-beam-driven chemical processes during liquid phase transmission electron microscopy

Published online by Cambridge University Press:  10 September 2020

Taylor J. Woehl
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, USA; tjwoehl@umd.edu
Trevor Moser
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, USA; trevor.moser@pnnl.gov
James E. Evans
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, USA; james.evans@pnnl.gov
Frances M. Ross
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; fmross@mit.edu
Get access

Abstract

Liquid phase (or liquid cell) transmission electron microscopy (LP-TEM) has been established as a powerful tool for observing dynamic processes in liquids at nanometer to atomic length scales. However, the simple act of observation using electrons irreversibly alters the nature of the sample. A clear understanding of electron-beam-driven processes during LP-TEM is required to interpret in situ observations and utilize the electron beam as a stimulus to drive nanoscale dynamic processes. In this article, we discuss recent advances toward understanding, quantifying, mitigating, and harnessing electron-beam-driven chemical processes occurring during LP-TEM. We highlight progress in several research areas, including modeling electron-beam-induced radiolysis near interfaces, electron-beam-induced nanocrystal formation, and radiation damage of soft materials and biomolecules.

Type
Liquid Phase Electron Microscopy
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M., Nat. Mater. 2, 532 (2003).CrossRefGoogle Scholar
Ross, F.M., Science 350, aaa9886 (2015).CrossRefGoogle Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J., Piston, D.W., Proc. Natl. Acad. Sci. U.S.A. 106, 2159 (2009).CrossRefGoogle Scholar
de Jonge, N., Ross, F.M., Nat. Nanotechnol. 6, 695 (2011).CrossRefGoogle Scholar
Zheng, H.M., Smith, R.K., Jun, Y.W., Kisielowski, C., Dahmen, U., Alivisatos, A.P., Science 324, 1309 (2009).CrossRefGoogle Scholar
Lyu, J., Gong, X., Lee, S.-J., Gnanasekaran, K., Zhang, X., Wasson, M.C., Wang, X., Bai, P., Guo, X., Gianneschi, N.C., Farha, O.K., J. Am. Chem. Soc. 142, 4609 (2020).CrossRefGoogle Scholar
Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, W., Connell, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Evans, J.E., Lauhon, L.J., Zhang, J.-G., Liu, J., Browning, N.D., Cui, Y., Arslan, I., Wang, C.-M., Nano Lett. 13, 6106 (2013).CrossRefGoogle Scholar
Sacci, R.L., Black, J.M., Balke, N., Dudney, N.J., More, K.L., Unocic, R.R., Nano Lett. 15, 2011 (2015).CrossRefGoogle Scholar
Ianiro, A., Wu, H., van Rijt, M.M.J., Vena, M.P., Keizer, A.D.A., Esteves, A.C.C., Tuinier, R., Friedrich, H., Sommerdijk, N.A.J.M., Patterson, J.P., Nat. Chem. 11, 320 (2019).CrossRefGoogle Scholar
Swallow, A.J., Radiation Chemistry: An Introduction (Wiley, New York, 1973).Google Scholar
Collinson, E., Swallow, A.J., Chem. Rev. 56, 471 (1956).CrossRefGoogle Scholar
Grogan, J.M., Schneider, N.M., Ross, F.M., Bau, H.H., Nano Lett. 14, 359 (2014).CrossRefGoogle Scholar
Schneider, N.M., Norton, M.M., Mendel, B.J., Grogan, J.M., Ross, F.M., Bau, H.H., J. Phys. Chem. C 118, 22373 (2014).CrossRefGoogle Scholar
Cookman, J., Hamilton, V., Price, L.S., Hall, S.R., Bangert, U., Nanoscale 12, 4636 (2020).CrossRefGoogle Scholar
Abellan, P., Mehdi, B.L., Parent, L.R., Gu, M., Park, C., Xu, W., Zhang, Y.H., Arslan, I., Zhang, J.G., Wang, C.M., Evans, J.E., Browning, N.D., Nano Lett. 14, 1293 (2014).CrossRefGoogle Scholar
Woehl, T.J., Abellan, P., J. Microsc. 265, 135 (2017).CrossRefGoogle Scholar
Sutter, E., Jungjohann, K., Bliznakov, S., Courty, A., Maisonhaute, E., Tenney, S., Sutter, P., Nat. Commun. 5, 4946 (2014).CrossRefGoogle Scholar
Gupta, T., Schneider, N.M., Park, J.H., Steingart, D., Ross, F.M., Nanoscale 10, 7702 (2018).CrossRefGoogle Scholar
Unocic, R.R., Lupini, A.R., Borisevich, A.Y., Cullen, D.A., Kalinin, S.V., Jesse, S., Nanoscale 8, 15581 (2016).CrossRefGoogle Scholar
den Heijer, M., Shao, I., Radisic, A., Reuter, M.C., Ross, F.M., APL Mater. 2, 022101 (2014).CrossRefGoogle Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D., Arslan, I., Nano Lett. 11, 2809 (2011).CrossRefGoogle Scholar
Woehl, T.J., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D., Browning, N.D., Ultramicroscopy 127, 53 (2013).CrossRefGoogle Scholar
Jungjohann, K.L., Bliznakov, S., Sutter, P.W., Stach, E.A., Sutter, E.A., Nano Lett. 13, 2964 (2013).CrossRefGoogle Scholar
Abellan, P., Woehl, T.J., Parent, L.R., Browning, N.D., Evans, J.E., Arslan, I., Chem. Commun. 50, 4873 (2014).CrossRefGoogle Scholar
Moser, T.H., Mehta, H., Park, C., Kelly, R.T., Shokuhfar, T., Evans, J.E., Sci. Adv. 4, eaaq1202 (2018).CrossRefGoogle Scholar
Gupta, T., Schneider, N.M., Park, J.H., Steingart, D., Ross, F.M., Nanoscale 10, 7702 (2018).CrossRefGoogle Scholar
Park, J.H., Schneider, N.M., Grogan, J.M., Reuter, M.C., Bau, H.H., Kodambaka, S., Ross, F.M., Nano Lett. 15, 5314 (2015).CrossRefGoogle Scholar
Hutzler, A., Schmutzler, T., Jank, M.P.M., Branscheid, R., Unruh, T., Spiecker, E., Frey, L., Nano Lett. 18, 7222 (2018).CrossRefGoogle Scholar
Rehn, S.M., Jones, M.R., ACS Energy Lett. 3, 1269 (2018).CrossRefGoogle Scholar
Hauwiller, M.R., Ondry, J.C., Chan, C.M., Khandekar, P., Yu, J., Alivisatos, A.P., J. Am. Chem. Soc. 141, 4428 (2019).CrossRefGoogle Scholar
Woehl, T.J., Evans, J.E., Arslan, L., Ristenpart, W.D., Browning, N.D., ACS Nano 6, 8599 (2012).CrossRefGoogle Scholar
Woehl, T.J., Park, C., Evans, J.E., Arslan, I., Ristenpart, W.D., Browning, N.D., Nano Lett. 14, 373 (2014).CrossRefGoogle Scholar
Alloyeau, D., Dachraoui, W., Javed, Y., Belkahla, H., Wang, G., Lecoq, H., Ammar, S., Ersen, O., Wisnet, A., Gazeau, F., Ricolleau, C., Nano Lett. 15, 2574 (2015).CrossRefGoogle Scholar
Liao, H.G., Cui, L.K., Whitelam, S., Zheng, H.M., Science 336, 1011 (2012).CrossRefGoogle Scholar
Abellan, P., Moser, T.H., Lucas, I.T., Grate, J.W., Evans, J.E., Browning, N.D., RSC Adv. 7, 3831 (2017).CrossRefGoogle Scholar
Abellan, P., Parent, L.R., Al Hasan, N., Park, C., Arslan, I., Karim, A.M., Evans, J.E., Browning, N.D., Langmuir 32, 1468 (2016).CrossRefGoogle Scholar
Woehl, T.J.Chem. Mater. (2020), doi:10.1021/acs.chemmater.0c01360.CrossRefGoogle Scholar
Wang, M., Park, C., Woehl, T.J., Chem. Mater. 30, 7727 (2018).CrossRefGoogle Scholar
Moser, T.H., Mehta, H., Park, C., Kelly, R.T., Shokuhfar, T., Evans, J.E., Sci. Adv. 4, eaaq1202 (2018).CrossRefGoogle Scholar
Ahmad, N., Wang, G., Nelayah, J., Ricolleau, C., Alloyeau, D., Nano Lett. 17, 4194 (2017).CrossRefGoogle Scholar
Sung, J., Choi, B.K., Kim, B., Kim, B.H., Kim, J., Lee, D., Kim, S., Kang, K., Hyeon, T., Park, J., J. Am. Chem. Soc. 141, 18395 (2019).CrossRefGoogle Scholar
Sun, M., Yu, B., Hong, M., Li, Z., Lyu, F., Li, X., Li, Z., Wei, X., Zhang, Z., Zhang, Y., Chen, Q., Small 16, 1906435 (2020).CrossRefGoogle Scholar
Liu, P., Chen, Q., Ito, Y., Han, J.H., Chu, S.F., Wang, X.D., Reddy, K.M., Song, S.X., Hirata, A., Chen, M.W., Nano Lett. 20, 1944 (2020).CrossRefGoogle Scholar
Hauwiller, M.R., Frechette, L.B., Jones, M.R., Ondry, J.C., Rotskoff, G.M., Geissler, P., Alivisatos, A.P., Nano Lett. 18, 5731 (2018).CrossRefGoogle Scholar
Wu, S., Li, M., Sun, Y., Angew. Chem. Int. Ed. Engl. 58, 8995 (2019).Google Scholar
Wang, M., Dissanayake, T.U., Park, C., Gaskell, K., Woehl, T.J., J. Am. Chem. Soc. 141, 13516 (2019).CrossRefGoogle Scholar
Cheng, H.-W., Yan, S., Li, J., Wang, J., Wang, L., Skeete, Z., Shan, S., Zhong, C.-J., ACS Appl. Mater. Interfaces 10, 40348 (2018).CrossRefGoogle Scholar
Dahlgren, B., Sabatino, M.A., Dispenza, C., Jonsson, M., Macromol. Theory Simul. 29, 1900046 (2020).CrossRefGoogle Scholar
Ulański Zainuddin, P., Rosiak, J.M., Radiat. Phys. Chem. 46, 913 (1995).CrossRefGoogle Scholar
Ulański, P., Janik, I., Rosiak, J.M., Radiat. Phys. Chem. 52, 289 (1998).CrossRefGoogle Scholar
Nagamanasa, K.H., Wang, H., Granick, S., Adv. Mater. 29, 1703555 (2017).CrossRefGoogle Scholar
Liu, Y.Z., Lin, X.M., Sun, Y.G., Rajh, T., J. Am. Chem. Soc. 135, 3764 (2013).CrossRefGoogle Scholar
Woehl, T.J., Prozorov, T., J. Phys. Chem. C 119, 21261 (2015).CrossRefGoogle Scholar
Verch, A., Pfaff, M., de Jonge, N., Langmuir 31, 6956 (2015).CrossRefGoogle Scholar
Girotti, A.W., Free Radic. Biol. Med. 1, 87 (1985).CrossRefGoogle Scholar
Niki, E., Yoshida, Y., Saito, Y., Noguchi, N., Biochem. Biophys. Res. Commun. 338, 668 (2005).CrossRefGoogle Scholar
Frankel, E.N., Prog. Lipid Res. 23, 197 (1984).CrossRefGoogle Scholar
Stark, G., J. Membr. Biol. 205, 1 (2005).CrossRefGoogle Scholar
Gardner, H.W., Free Radic. Biol. Med. 7, 65 (1989).CrossRefGoogle Scholar
Stark, G., Biochim. Biophys. Acta Biomembr. 1071, 103 (1991).CrossRefGoogle Scholar
Frankel, E.N., Chem. Phys. Lipids 44, 73 (1987).CrossRefGoogle Scholar
Acosta-Elias, M.A., Burgara-Estrella, A.J., Sarabia-Sainz, J.A., Silva-Campa, E., Angulo-Molina, A., Santacruz-Gomez, K.J., Castaneda, B., Soto-Puebla, D., Ledesma-Osuna, A.I., Melendrez-Amavizca, R., Pedroza-Montero, M., Int. J. Radiat. Biol. 93, 1306 (2017).CrossRefGoogle Scholar
Wong-Ekkabut, J., Xu, Z., Triampo, W., Tang, I.M., Tieleman, D.P., Monticelli, L., Biophys. J. 93, 4225 (2007).CrossRefGoogle Scholar
Nakazawa, T., Nagatsuka, S., Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 38, 537 (1980).CrossRefGoogle Scholar
Moser, T.H., Shokuhfar, T., Evans, J.E., Micron 117, 8 (2019).CrossRefGoogle Scholar
Moser, T.H., Mehta, H., Park, C., Kelly, R.T., Shokuhfar, T., Evans, J.E., Sci. Adv4, eaaq1202 (2018).Google Scholar
Woehl, T., Kashap, S., Sánchez-Quesada, M., Jiménez López, C., Perez-Gonzalez, T., Faivre, D., Trubytsyn, D., Bazylinski, D., Prozorov, T., Microsc. Microanal. 20, 1510 (2014).CrossRefGoogle Scholar
Woehl, T.J., Kashyap, S., Firlar, E., Perez-Gonzalez, T., Faivre, D., Trubitsyn, D., Bazylinski, D.A., Prozorov, T., Sci. Rep. 4, 6854 (2014).CrossRefGoogle Scholar
Barth, C., Stark, G., Biochim. Biophys. Acta Biomembr. 1066, 54 (1991).CrossRefGoogle Scholar
Kunz, L., Zeidler, U., Haegele, K., Przybylski, M., Stark, G., Biochemistry 34, 11895 (1995).CrossRefGoogle Scholar
Barth, C., Stark, G., Wilhelm, M., Biophys. J. 64, 92 (1993).CrossRefGoogle Scholar
Desai, I.D., Tappel, A.L., J. Lipid Res. 4, 204 (1963).Google Scholar
Schuessler, H., Schilling, K., Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 45, 267 (1984).CrossRefGoogle Scholar
Stadtman, E.R., Levine, R.L., Amino Acids 25, 207 (2003).CrossRefGoogle ScholarPubMed
Garrison, W.M., Chem. Rev. 87, 381 (1987).CrossRefGoogle Scholar
Uchida, K., Kato, Y., Kawakishi, S., Biochem. Biophys. Res. Commun. 169, 265 (1990).CrossRefGoogle Scholar
Amici, A., Levine, R.L., Tsai, L., Stadtman, E.R., J. Biol. Chem. 264, 3341 (1989).Google Scholar
Taborsky, G., Biochemistry 12, 1341 (1973).CrossRefGoogle Scholar
Uchida, K., Kawakishi, S., FEBS Lett. 332, 208 (1993).CrossRefGoogle Scholar
Armstrong, R.C., Swallow, A.J., Radiat. Res. 40 (1969).CrossRefGoogle Scholar
Koufen, P., Stark, G., Biochim. Biophys. Acta Mol. Basis Dis. 1501, 44 (2000).CrossRefGoogle Scholar
Koufen, P., RüCk, A., Brdiczka, D., Wendt, S., Wallimann, T., Stark, G., Biochem. J. 344, 413 (1999).CrossRefGoogle Scholar
Hitschke, K., Bühler, R., Apell, H.J., Stark, G., FEBS Lett. 353, 297 (1994).CrossRefGoogle Scholar
Kourie, J.I., Am. J. Physiol. 275, C1 (1998).CrossRefGoogle Scholar
Cecarini, V., Gee, J., Fioretti, E., Amici, M., Angeletti, M., Eleuteri, A.M., Keller, J.N., Biochim. Biophys. Acta 1773, 93 (2007).CrossRefGoogle Scholar
Touve, M.A., Carlini, A.S., Gianneschi, N.C., Nat. Commun. 10, 4837 (2019).CrossRefGoogle Scholar
Schneider, N.M., Norton, M.M., Mendel, B.J., Grogan, J.M., Ross, F.M., Bau, H.H., J. Phys. Chem. C 118, 22373 (2014).CrossRefGoogle Scholar
Tokalov, S.V., Iagunov, A.S., Radiat. Environ. Biophys. 50, 265 (2011).CrossRefGoogle Scholar
Eom, H.S., Park, H.S., You, G.E., Kim, J.Y., Nam, S.Y., Int. J. Radiat. Biol. 93, 1207 (2017).CrossRefGoogle Scholar
Acharya, S., Bhat, N.N., Joseph, P., Sanjeev, G., Sreedevi, B., Narayana, Y., Radiat. Environ. Biophys. 50, 253 (2011).CrossRefGoogle Scholar
Sowa, M.B., Kathmann, L.E., Holben, B.A., Thrall, B.D., Kimmel, G.A., Radiat. Res. 164, 677 (2005).CrossRefGoogle Scholar