Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T10:44:47.372Z Has data issue: false hasContentIssue false

Electromagnetic Applications of Intermetallic Compounds

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Intermetallic compounds constitute a very important class of materials for electromagnetic applications. In this article, some important materials and applications are discussed in the following areas: (1) magnetic, magnetoresistive, and magnetostrictive applications; (2) superconductor applications; (3) semiconductor and optical applications; (4) magneto-optical applications; and (5) thermoelectric applications. Emphasis is placed on materials that are important in existing devices and applications or show promise for future applications. The interested reader should consult the reviews in Westbrook and Fleischer's book, and the many references contained therein, for further information.

Type
Applications of Intermetallic Compounds
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Intermetallic Compounds: Principles and Practice, vol. 2, edited by Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, Chichester, 1995).Google Scholar
2.Bozorth, R.M., Rev. Mod. Phys. 25 (1953) p. 42.CrossRefGoogle Scholar
3.Masumoto, H., Sci. Rep. Tohoku Imp. Univ. (Honda) 388 (1936) p. 388.Google Scholar
4.Eimen, G.W., U.S. Patent No. 1,739,752 (1929).Google Scholar
5.Nesbitt, E.A., Willens, R.H., Sherwood, R.C., Buehler, E., and Wenick, J.H., Appl. Phys. Lett. 12 (1968) p. 3361.CrossRefGoogle Scholar
6.Strnat, K.J., J. Magn. Magn. Mater. 7 (1978) p. 351.CrossRefGoogle Scholar
7.Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H., and Matsuura, Y., J. Appl. Phys. 55 (1984) p. 2083.CrossRefGoogle Scholar
8.Rhyne, J.J. and Legvold, S., Phys. Rev. 138 (1965) p. A507.CrossRefGoogle Scholar
9.Clark, A.E., DeSavage, D., and Bozorth, R.M., Phys. Rev. 138 (1965) p. A216.CrossRefGoogle Scholar
10.Galloway, N., Greenough, R.D., Schulze, M.P., and Jenner, A.G.I., J. Magn. Magn. Mater. 119 (1993) p. 107.CrossRefGoogle Scholar
11.Ohnes, H.K., Commun. Phys. Lab. 120b (University of Leiden, 1911).Google Scholar
12.Kunzler, J.E., Buehler, E., Hsu, F.S.L., and Wernick, J., Phys. Rev. Lett. 6 (1961) p. 89.CrossRefGoogle Scholar
13.Bednorz, J.G. and Muller, K.A., Phys. Rev. B 64 (1986) p. 189.Google Scholar
14.Bigot, J.Y., Daunois, A., Leoneili, R., Sence, M., Mathew, J.G.H., Smith, S.D., and Walker, A.C., Appl. Phys. Lett. 49 (14) (1986) p. 844.CrossRefGoogle Scholar
15.Jin, R., Wang, L., Sprague, R.W., Gibbs, H.M., Gigioli, G.C., Kulcke, H., Macleod, H.A., Peyghambarian, N., Olbright, G.R., and Warren, M., in Optical Bistability III, Proc. Topical Meeting, Tucson, Arizona (Springer-Verlag, Berlin, 1986) p. 61.CrossRefGoogle Scholar
16.Dhere, N.G., Thin Solid Films 193/194 (1990) p. 757.CrossRefGoogle Scholar
17.Mayer, L., J. Appl. Phys. 29 (1958) p. 1454.CrossRefGoogle Scholar
18.van Engen, P.G., Buschow, K.H.J., and Erman, M., J. Magn. Magn. Mater. 30 (1983) p. 374.CrossRefGoogle Scholar
19.Kawanabe, T. and Naoe, M., J. Phys. C8 (1988) p. 1783.Google Scholar
20.Chaudhari, P., Cuomo, J.J., and Gambino, R.J., Appl. Phys. Lett. 22 (1973) p. 337.CrossRefGoogle Scholar
21.Weller, D., private communication (1992).Google Scholar