Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T14:48:29.553Z Has data issue: false hasContentIssue false

Degradation of SiC High-Voltage pin Diodes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The recent discovery of forward-voltage degradation in SiC pin diodes has created an obstacle to the successful commercialization of SiC bipolar power devices. Accordingly, it has attracted intense interest around the world. This article summarizes the progress in both the fundamental understanding of the problem and its elimination.The degradation is due to the formation of Shockley-type stacking faults in the drift layer, which occurs through glide of bounding partial dislocations. The faults gradually cover the diode area, impeding current flow. Since the minimization of stress in the device structure could not prevent this phenomenon, its driving force appears to be intrinsic to the material. Stable devices can be fabricated by eliminating the nucleation sites, namely, dissociated basal-plane dislocations in the drift layer.Their density can be reduced by the conversion of basal-plane dislocations propagating from the substrate into threading dislocations during homoepitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baliga, B.J., in Wide-Bandgap Semiconductors for High Power, High Frequency, and High Temperature, edited by S., DenBaars, J., Palmour, M., Shur, and M., Spencer (Mater. Res. Soc. Symp. Proc. 512, Warrendale, PA, 1998) p. 77.Google Scholar
2.Singh, R., Cooper, J.A. Jr., Melloch, M.R., Chow, T.P., and Palmour, J.W., IEEE Trans. Electron Devices 49 (2002) p. 665.Google Scholar
3.Lendenmann, H., Dahlquist, F., Johansson, N., Söderholm, R., Nilsson, P.A., Bergman, J.P., and Skytt, P., Mater. Sci. Forum 353–356 (2001) p. 727.CrossRefGoogle Scholar
4.Bergman, J.P., Lendenmann, H., Nilsson, P.Å., and Skytt, P., Mater. Sci. Forum 353–356 (2001) p. 299.CrossRefGoogle Scholar
5.Liu, J.Q., Skowronski, M., Hallin, C., Söderholm, R., and Lendenmann, H., Appl. Phys. Lett. 80 (2002) p. 749.CrossRefGoogle Scholar
6.Persson, P.O.Å., Hultman, L., Jacobson, H., Bergman, J.P., Janzén, E., Molina-Aldareguia, J.M., Clegg, W.J., and Tuomi, T., Appl. Phys. Lett. 80 (2002) p. 4852.Google Scholar
7.Twigg, M.E., Stahlbush, R.E., Fatemi, M., Arthur, S.D., Fedison, J.B., Tucker, J.B., and Wang, S., Appl. Phys. Lett. 82 (2003) p. 2410; M.E. Twigg, R.E. Stahlbush, M. Fatemi, S.D. Arthur, J.B. Fedison, J.B. Tucker, and S. Wang, Appl. Phys. Lett. 84 (2004) p. 4816.CrossRefGoogle Scholar
8.Ha, S., Hu, K., Skowronski, M., Sumakeris, J.J., Paisley, M.J., and Das, M.K., Appl. Phys. Lett. 84 (2004) p. 5267.Google Scholar
9.Galeckas, A., Linnros, J., Breitholtz, B., and Bleichner, H., J. Appl. Phys. 90 (2001) p. 980.CrossRefGoogle Scholar
10.Stahlbush, R.E., Fatemi, M., Fedison, J.B., Arthur, S.D., Rowland, L.B., and Wang, S., J. Electron. Mater. 31 (2002) p. 370 and p. 827.Google Scholar
11.Janzén, E., Henry, A., Bergman, J.P., Ellison, A., and Magnusson, B., Mater. Sci. Semicond. Process. 4 (2001) p. 181.CrossRefGoogle Scholar
12.Sridhara, S.G., Carlsson, F.H.C., Bergman, J.P., and Janzén, E., Appl. Phys. Lett. 79 (2001) p. 3944.Google Scholar
13.Miao, M.S., Limpijumnong, S., and Lambrecht, W.R.L., Appl. Phys. Lett. 79 (2001) p. 4360.CrossRefGoogle Scholar
14.Iwata, H., Lindefelt, U., Öberg, S., and Briddon, P.R., Phys. Rev. B 65 033203(2001).Google Scholar
15.Jacobson, H., Birch, J., Yakimova, R., Syväjärvi, M., Bergman, J.P., Ellison, A., Tuomi, T., and Janzén, E., J. Appl. Phys. 91 (2002) p. 6354.CrossRefGoogle Scholar
16.Ha, S., Benamara, M., Skowronski, M., and Lendenmann, H., Appl. Phys. Lett. 83 (2003) p. 4957.CrossRefGoogle Scholar
17.Skowronski, M., Liu, J.Q., Vetter, W.M., Dudley, M., Hallin, C., and Lendenmann, H., J. Appl. Phys. 92 (2002) p. 4699.Google Scholar
18.Ha, S., Skowronski, M., and Lendenmann, H., J. Appl. Phys. 96 (2004) p. 393.Google Scholar
19.Zhang, M., Pirouz, P., and Lendenmann, H., Appl. Phys. Lett. 83 (2003) p. 3320.CrossRefGoogle Scholar
20.Blumenau, A.T., Fall, C.J., Jones, R., Öberg, S., Frauenheim, T., and Briddon, P.R., Phys. Rev. B 68 174108(2003).CrossRefGoogle Scholar
21.Galeckas, A., Linnros, J., and Pirouz, P., Appl. Phys. Lett. 81 (2002) p. 883.Google Scholar
22.Ha, S., Skowronski, M., Sumakeris, J.J., Paisley, M.J., and Das, M.K., Phys. Rev. Lett. 92 177504(2004).Google Scholar
23.Ha, S., Mieszkowski, P., Skowronski, M., and Rowland, L.B., J. Cryst. Growth 244 (2002) p. 257.Google Scholar
24.Sumakeris, J.J., Das, M., Hobgood, H.M., Müller, S.G., Paisley, M.J., Ha, S., Skowronski, M., Palmour, J.W., and Carter, C.H., Jr., Mater. Sci. Forum 457–460 (2004) p. 1113.CrossRefGoogle Scholar
25.Ohno, T., Yamaguchi, H., Kuroda, S., Kojima, K., Suzuki, T., and Arai, K., J. Cryst. Growth 271 (2004) p. 1.CrossRefGoogle Scholar
26.Das, M.K., Sumakeris, J.J., Paisley, M.J., and Powell, A.R., Mater. Sci. Forum 457–460 (2004) p. 1105.Google Scholar
27.Negoro, Y., Kimoto, T., and Matsunami, H., Jpn. J. Appl. Phys. 43 (2004) p. 471.Google Scholar
28.Tanaka, Y., Fukuda, K., Arai, K., Kojima, K., Suzuki, T., and Yatsuo, T., Appl. Phys. Lett. 84 (2004) p. 1774.Google Scholar