Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-22T11:04:07.392Z Has data issue: false hasContentIssue false

Crystalline Si Films for Integrated Active-Matrix Liquid-Crystal Displays

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The fabrication of thin-film-transistor (TFT) devices on a transparent substrate lies at the heart of active-matrix-liquid-crystal-display (AMLCD) technology. This is both good and bad. On one hand it is a difficult task to manufacture millions of intricate semiconductor devices reliably over such large display substrates. On the positive side, AMLCD technology can aspire to become much more than a “display” technology. The idea is as follows: It is possible for one to readily fabricate additional transistors to execute various electronic functions—those that would otherwise be handled by separate large-scale-integration (LSI) and very large-scale-integration (VLSI) circuits—on the periphery of the display. Since this can be done, in principle, with no—or a minimal number of—additional processing steps, substantial cost reduction is possible and significant value can be added to the final product.

Doing so and doing it well can ultimately lead to “system-on-glass” products in which the entire electronic circuitry needed for a product is incorporated directly onto a glass substrate. This means that integrated active-matrix liquid-crystal displays (IAMLCDs) have the potential to bypass conventional Si-wafer-based products and may lead TFT technology to compete directly against Si-wafer-based monolithic integrated circuits.

Type
Materials for Flat-Panel Displays
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Omara, W.C., Liquid Crystal Displays; Manufacturing Science and Technology (Van Nostrand and Reinhold, New York, 1993).Google Scholar
2.Ohshima, H. and Morozumi, S., IEEE IEDM (1989) p. 157.Google Scholar
3.Ohshima, H., Conf. Record 1994 Int. Display Conf. (1994) p. 26.Google Scholar
4.Kazmerski, L.L., Polysilicon and Amorphous Thin Film Devices (Academic, New York, 1980).Google Scholar
5.Kamins, T.I., Polycrystalline Silicon for Integrated Circuit Applications (Kluwer Academic, Boston, 1988).CrossRefGoogle Scholar
6.Seager, C.H. and Ginley, D.S., Appl. Phys. Lett. 34 (1979) p. 337.CrossRefGoogle Scholar
7.Seki, S., Kogure, O., and Tsujiyama, B., IEEE Electron Device Lett. EDL-8 (1987) p. 434.CrossRefGoogle Scholar
8.Yamauchi, N. and Reif, R., J. Appl. Phys. 75 (1994) p. 3235.CrossRefGoogle Scholar
9.Noguchi, T., Jpn. J. Appl. Phys. 32 (1993) p. L1585.CrossRefGoogle Scholar
10.Iverson, R.B., in Extended Abstracts of the Materials Research Society Conference (1988) p. 173.Google Scholar
11.Kumomi, H., Yonehara, T., and Noma, T., Appl. Phys. Lett. 59 (1991) p. 3565.CrossRefGoogle Scholar
12.Kim, H.J. and Im, J.S., in Microcrystalline and Nanocrystalline Semiconductors, edited by Brus, L., Hirose, M., Collins, R.W., Koch, F., and Tsai, C.C. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, 1995) p. 903.Google Scholar
13.Im, J.S., The First TFT LCD International Workshop Proceedings (1995) p. 358.Google Scholar
14.Lam, H.W. and Thompson, M.J., Comparison of Thin- Film Transistor and SOI Technologies, Mat. Res. Soc. Symp. Proc. 33 (North-Holland, 1984).Google Scholar
15.Chiang, A., Geis, M.W., and Peiffer, L., in Semiconductor-on-Insulator and Thin-Film-Transistor Technology (Mater. Res. Soc. Symp. Proc. 53, Pittsburgh, 1986).Google Scholar
16.Furukawa, S., ed., Silicon-On-Insulator: Its Technology and Applications (KTK Scientific Publishers, Tokyo, 1985).CrossRefGoogle Scholar
17.Turnbull, D., in Beam-Solid Interactions and Phase Transformations (Mater. Res. Soc. Symp. Proc. 51, Pittsburgh, 1985) p. 71.Google Scholar
18.Poate, J.M., (Mat. Res. Soc. Symp. Proc. 13, Pittsburgh, 1983) p. 263.Google Scholar
19.Elliot, S.R., Physics of Amorphous Materials (John Wiley & Sons, New York, 1990).Google Scholar
20.Koster, U., Phys. Status Solidi A 48 (1978) p. 313.CrossRefGoogle Scholar
21.Kakkad, R., Smith, J., Lau, W.S., Fonash, S.J., and Kerns, R., J. Appl. Phys. 69 (1989) p. 2069.CrossRefGoogle Scholar
22.Iverson, R.B. and Reif, R., J. Appl. Phys. 62 (1987) p. 1675.CrossRefGoogle Scholar
23.Christian, J.W., The Theory of Transformation in Metals and Alloys, 2nd ed. (Pergamon, Oxford, 1975).Google Scholar
24.Batstone, J.L., Phil. Mag. A 67 (1993) p. 51.CrossRefGoogle Scholar
25.Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M., and Jacobson, D.C., Appl. Phys. Lett. 42 (1983) p. 698.CrossRefGoogle Scholar
26.Kelton, K.F., Greer, A.L., and Thompson, C.V., J. Chem. Phys. 79 (1983) p. 6261.CrossRefGoogle Scholar
27.James, P.F., Nucleation and Crystallization in Glasses, edited by Simmons, J.H., Uhlmann, D.R., and Beall, G.H. (Columbus, 1982).Google Scholar
28.Hatalis, M.K. and Greve, D.W., J. Appl. Phys. 63 (1988) p. 2260.CrossRefGoogle Scholar
29.Nakazawa, K., J. Appl. Phys. (1991) p. 1703.CrossRefGoogle Scholar
30.Hong, C.H., Park, C.Y., and Kim, H-K., J. Appl. Phys. 71 (1992) p. 5427.CrossRefGoogle Scholar
31.Im, J.S. and Atwater, H.A., Appl. Phys. Lett. 57 (1990) p. 1766.CrossRefGoogle Scholar
32.Brown, W.L., Elliman, R.G., Knoell, R.V., Leiberich, A., Linnros, J., Maher, D.M., and Williams, J.S., in Microscopy of Semiconductor Materials, edited by Cullis, A.G. (Institute of Physics, London, 1987) p. 61.Google Scholar
33.Spinella, C., Lombardo, S., and Campisano, S.U., Appl. Phys. Lett. 55 (1989) p. 109.CrossRefGoogle Scholar
34.Im, J.S., Shin, J.H., and Atwater, H.A., Appl. Phys. Lett. 59 (1991) p. 2314.CrossRefGoogle Scholar
35.Nygren, E., Pogany, A.P., Short, K.T., and Williams, J.S., Elliman, R.G., and Poate, J.M.Appl. Phys. Lett. 52 (1988) p. 439.CrossRefGoogle Scholar
36.Hayzeldon, C., Batstone, J.L., and Cammarata, R.C., Appl. Phys. Lett. 60 (1992) p. 225.CrossRefGoogle Scholar
37.Liu, G. and Fonash, S.J., Appl. Phys. Lett. 62 (1993) p. 2554.CrossRefGoogle Scholar
38.Lee, S.W., Jeon, Y.C., and Joo, S.K., Appl. Phys. Lett. 66 (1995) p. 1671.CrossRefGoogle Scholar
39.Wu, I.W., Huang, W.Y., Jackson, W.B., Lewis, A.G., and Chiang, A., IEEE, Elect. Dev. Lett. 12 (1991) p. 181.CrossRefGoogle Scholar
40.Moffatt, D.M., in Flat Panel Display Materials, edited by Batey, J., Chiang, A., and Holloway, P.H. (Mater. Res. Soc. Symp. Proc. 345, Pittsburgh, 1994) p. 163.Google Scholar
41.Song, J.H. and Im, J.S., in Crystallization and Related Phenomena in Amorphous Materials, edited by Libera, M., Haynes, T.E., Cebe, P., and Dickinson, J.E. Jr. (Mater. Res. Soc. Symp. Proc. 321, Pittsburgh, 1994) p. 307.Google Scholar
42.Hwang, C.W., Ryu, M.K., Kim, K.B., Lee, S.C., and Kim, C.S., J. Appl. Phys. 77 (1995) p. 3042.CrossRefGoogle Scholar
43.King, T.J., Pfeister, J.R., Shott, J.D., McVittie, J.P., Saraswat, K.C., IEEE DM (1990) p. 253.Google Scholar
44.Sameshima, T. and Usui, S., in Materials Issues in Silicon Integrated Circuit Processing (Mater. Res. Soc. Symp. Proc. 71, Pittsburgh, 1986) p. 435.Google Scholar
45.Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S., and Hotta, K., IEEE Trans. Electron Dev. 36 (1989) p. 2868.CrossRefGoogle Scholar
46.Bachrach, R. Z., Winer, K., Boyce, J.B., Ready, S.E., Johnson, R.I., and Anderson, G.B., J. Electron. Mater. 19 (1990) p. 241.CrossRefGoogle Scholar
47.Kuriyama, H., Kiyama, S., Noguchi, S., Kuwahara, T., Ishida, S., Nohda, T., Sano, K., Iwata, H., Tsuda, S., and Nakano, S., IEEE IEDM (1991) p. 1.Google Scholar
48.Shimizu, K., Horoya, H., Sugiura, O., and Matsumura, M., Jpn. J. Appl. Phys. 30 (1991) p. 3704.CrossRefGoogle Scholar
49.Brotherton, S.D., McCulloch, D.J., Clegg, J.B., and Gowers, J.P., IEEE Trans. Elect. Dev. 40 (1993) p. 407.CrossRefGoogle Scholar
50.Poate, J.M. and Mayer, J.W., Laser Annealing of Semiconductors (Academic, New York, 1982).Google Scholar
51.Olson, G.L. and Roth, J.A., Materials Science Reports (Amsterdam, North-Holland, 1988).Google Scholar
52.Perepezko, J.H., J. Non-Cryst. Solids 156 (1993) p. 463.CrossRefGoogle Scholar
53.Im, J.S., Kim, H.J., and Thompson, M.O., Appl. Phys. Lett. 63 (1993) p. 1969.CrossRefGoogle Scholar
54.Stiffler, S.R., Thompson, M.O., and Peercy, P.S., Phys. Rev. Lett. 60 (1988) p. 2519.CrossRefGoogle Scholar
55.Im, J.S. and Kim, H.J., Appl. Phys. Lett. 64 (1994) p. 2303.CrossRefGoogle Scholar
56.Sameshima, T. and Usui, S., Appl. Phys. Lett. 59 (1991) p. 2724.CrossRefGoogle Scholar
57.Eiumchotchawalit, T. and Im, J.S., in Crystallization and Related Phenomena in Amorphous Materials (Mater. Res. Soc. Symp. Proc. 321, Pittsburgh, 1994) p. 725.Google Scholar
58.Johnson, R.I., Anderson, G.B., Boyce, J.B., Fork, D.K., Mei, P., Ready, S.E., and Chen, S., in Amorphous Silicon Technology—1993 (Mater. Res. Soc. Symp. Proc. 297, Pittsburgh, 1993) p. 533.Google Scholar
59.Kim, H.J. and Im, J.S., in Amorphous Silicon Technology—1993 (Mater. Res. Soc. Symp. Proc. 297, Pittsburgh, 1993, 321, Pittsburgh, 1994) p. 665.Google Scholar
60.Kuriyama, H., Sano, K., Ishida, S., Nohda, T., Aya, Y., Kuwahara, T., Noguchi, S., Kiyama, S., Tsuda, S., and Nakano, S., in Amorphous Silicon Technology—1993 (Mater. Res. Soc. Symp. Proc. 297, Pittsburgh, 1993) p. 657.Google Scholar
61.Cahn, R.W., Physical Metallurgy (North-Holland, Amsterdam, 1970).Google Scholar
62.Thompson, C.V., J. Appl. Phys. 58 (1985) p. 763.CrossRefGoogle Scholar
63.Simile, M., Information Display 11 (1995) p. 18.Google Scholar
64.Givargizov, E.I., Oriented Crystallization on Amorphous Substrates (Plenum Press, New York, 1991).CrossRefGoogle Scholar