Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-03T15:22:38.323Z Has data issue: false hasContentIssue false

Computational design of magnetic metal-organic complexes and coordination polymers with spin-switchable functionalities

Published online by Cambridge University Press:  15 July 2014

Tanusri Saha-Dasgupta
Affiliation:
S.N. Bose National Centre for Basic Sciences, India; t.sahadasgupta@gmail.com
Peter M. Oppeneer
Affiliation:
Department of Physics and Astronomy, Uppsala University, Sweden; peter.oppeneer@physics.uu.se
Get access

Abstract

Magnetic metal-organic complexes and coordination polymer frameworks can exhibit a transition between two different spin states of the integrated transition-metal ion, an attribute known as a spin-crossover (SCO) transition. This is a spectacular phenomenon that provides magnetic bi-stability and reversible spin-switchability to the material. Consequently, the magnetic state of the metal-organic center can be externally steered by temperature, pressure, or light irradiation. SCO molecules therefore are promising materials for various technological applications, such as spintronics devices, photo-switches, color displays, and information storage units. In spite of the importance of SCO materials in spintronics and other applications, the materials-specific understanding of the SCO phenomenon has remained a challenge. Here we survey recent developments in first-principles computational design of SCO metal-organic materials. A major outcome of recent state-of-the-art investigations is that an accurate quantitative description and even computational design of SCO materials can be provided by density functional theory-based electronic structure calculations combined with ab initio molecular dynamics simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gütlich, P., Goodwin, H.A., Eds., Spin Crossover in Transition Metal Compounds, Top. Curr. Chem.(Springer, Berlin, 2004), vols. 233235.Google Scholar
Brooker, S., Kitchen, J.A., Dalton Trans. 7331 (2009).Google Scholar
Kahn, O., Jay-Martinez, C., Science 279, 44 (1998).Google Scholar
Miyamachi, T., Gruber, M., Davesne, V., Bowen, M., Boukari, S., Joly, L., Scheurer, F., Rogez, G., Yamada, T.K., Ohresser, P., Beaurepaire, E., Wulfhekel, W., Nat. Commun. 3, 938 (2012).Google Scholar
Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Balestro, F., Nature 488, 357 (2012).Google Scholar
Decurtins, S., Gütlich, P., Köhler, C.P., Spiering, H., Hauser, A., Chem. Phys. Lett. 105, 1 (1984).CrossRefGoogle Scholar
Ohkoshi, S.-I., Imoto, K., Tsunobuchi, Y., Takano, S., Tokoro, H., Nat. Chem. 3, 564 (2011).Google Scholar
Kahn, O., Kröber, J., Jay, C., Adv. Mater. 4, 718 (1992).CrossRefGoogle Scholar
Bonhommeau, S., Molnár, G., Galet, A., Zwick, A., Real, J.A., McGarvey, J.J., Bousseksou, A., Angew. Chem. Int. Ed. 44, 4069 (2005).Google Scholar
Halder, G.J., Kepert, C.J., Moubaraki, B., Murray, K.S., Cashion, C.S., Science 298, 1762 (2002).CrossRefGoogle Scholar
Cambi, L., Szegö, L., Ber. Dtsch. Chem. Ges. 64, 2591 (1931).Google Scholar
Stoufer, R.C., Busch, D.H., Hadley, W.B., J. Am. Chem. Soc. 83, 3732 (1961).Google Scholar
Madeja, K., König, E., J. Inorg. Nucl. Chem. 25, 377 (1963).Google Scholar
Sieber, R., Decurtins, S., Stoeckli-Evans, H., Wilson, C., Yufit, D., Howard, J.A.K., Capelli, S.C., Hauer, A., Chem. Eur. J. 6, 361 (2000).Google Scholar
Gallois, B., Real, J.A., Hauw, C., Zarembowich, J., Inorg. Chem. 29, 1152 (1990).CrossRefGoogle Scholar
Willenbacher, N., Spiering, H., J. Phys. Chem. C 21, 1423 (1988).Google Scholar
Nishino, M., Boukheddaden, K., Konishi, Y., Miyashita, S., Phys. Rev. Lett. 98, 247203 (2007).Google Scholar
Timm, C., Phys. Rev. B: Condens. Matter 73, 014423 (2006).CrossRefGoogle Scholar
D’Avino, G., Painelli, A., Boukheddaden, K., Phys. Rev. B: Condens. Matter 84, 104119 (2011).Google Scholar
Paulsen, H., Schünemann, V., Wolny, J.A., Eur. J. Inorg. Chem. 56, 628 (2013).Google Scholar
Kepenekian, M., Le Guennic, B., Robert, V., J. Am. Chem. Soc. 131, 11498 (2009).Google Scholar
Kepenekian, M., Sánchez Costa, J., Le Guennic, B., Maldivi, P., Bonnet, S., Reedijk, J., Gamez, P., Robert, V., Inorg. Chem. 49, 11057 (2010).Google Scholar
Kohn, W., Sham, L.J., Phys. Rev. 140, 133 (1965).CrossRefGoogle Scholar
Cramer, C.J., Truhlar, D.G., Phys. Chem. Chem. Phys. 11, 10757 (2009).Google Scholar
Anisimov, V.I., Zaanen, J., Andersen, O.K., Phys. Rev. B: Condens. Matter 44, 943 (1991).Google Scholar
Lebègue, S., Pillet, S., Ángyán, J.G., Phys. Rev. B: Condens. Matter 78, 024433 (2008).Google Scholar
Sarkar, S., Tarafder, K., Oppeneer, P.M., Saha-Dasgupta, T., J. Mater. Chem. 21, 13832 (2011).Google Scholar
Bucko, T., Hafner, J., Lebègue, S., Ángyán, J.G., Phys. Chem. Chem. Phys. 14, 5389 (2012).Google Scholar
Tarafder, K., Kanungo, S., Oppeneer, P.M., Saha-Dasgupta, T., Phys. Rev. Lett. 109, 077203 (2012).Google Scholar
Maldonado, P., Kanungo, S., Saha-Dasgupta, T., Oppeneer, P.M., Phys. Rev. B: Condens. Matter 88, 020408R (2013).CrossRefGoogle Scholar
Kabalan, L., Matar, S.F., Zakhour, M., Létard, J.F., Z. Naturforsch. B: Chem. Sci. 63, 154 (2008).Google Scholar
Jeschke, H., Salguero, L., Rahaman, B., Buchsbaum, C., Pashchenko, V., Schmidt, M.U., Saha-Dasgupta, T., Valenti, R., New J. Phys. 9, 448 (2007).CrossRefGoogle Scholar
Panchmatia, P.M., Sanyal, B., Oppeneer, P.M., Chem. Phys. 343, 47 (2008).Google Scholar
Panchmatia, P.M., Ali, Md.E., Sanyal, B., Oppeneer, P.M., J. Phys. Chem. A 114, 13381 (2010).Google Scholar
Niel, V., Thompson, A.L., Munoz, M.C., Galet, A., Goeta, A.E., Real, J.A., Angew. Chem. Int. Ed. 42, 3760 (2003).Google Scholar
Droghetti, A., Alfè, D., Sanvito, S., J. Chem. Phys. 137, 124303 (2012).Google Scholar
Ali, Md.E., Sanyal, B., Oppeneer, P.M., J. Phys. Chem. B 116, 5849 (2012).Google Scholar
Nihei, M., Ui, M., Yokota, M., Han, L., Maeda, A., Kishida, H., Okamoto, H., Oshio, H., Angew. Chem. Int. Ed. 44, 6484 (2005).Google Scholar