Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-19T03:31:35.129Z Has data issue: false hasContentIssue false

Chemical and physical transformations of carbon-based nanomaterials observed by liquid phase transmission electron microscopy

Published online by Cambridge University Press:  10 September 2020

Lucas R. Parent
Affiliation:
Innovation Partnership Building, University of Connecticut, USA; lucas.parent@uconn.edu
Maria Vratsanos
Affiliation:
Northwestern University, USA; mariavratsanos2023@u.northwestern.edu
Biao Jin
Affiliation:
Pacific Northwest National Laboratory, USA; biao.jin@pnnl.gov
James J. De Yoreo
Affiliation:
Pacific Northwest National Laboratory, and the University of Washington, USA; James.DeYoreo@pnnl.gov
Nathan C. Gianneschi
Affiliation:
Northwestern University, USA; nathan.gianneschi@northwestern.edu
Get access

Abstract

This article addresses recent advances in liquid phase transmission electron microscopy (LPTEM) for studying nanoscale synthetic processes of carbon-based materials that are independent of the electron beam—those driven by nonradiolytic chemical or thermal reactions. In particular, we focus on chemical/physical formations and the assembly of nanostructures composed of organic monomers/polymers, peptides/DNA, and biominerals. The synthesis of carbon-based nanomaterials generally only occurs at specific conditions, which cannot be mimicked by aqueous solution radiolysis. Carbon-based structures themselves are also acutely sensitive to the damaging effects of the irradiating beam, which make studying their synthesis using LPTEM a unique challenge that is possible when beam effects can be quantified and mitigated. With new direct sensing, high frame-rate cameras, and advances in liquid cell holder designs, combined with a growing understanding of irradiation effects and proper experimental controls, microscopists have been able to make strides in observing traditionally problematic carbon-based materials under conditions where synthesis can be controlled, and imaged free from beam effects, or with beam effects quantified and accounted for. These materials systems and LPTEM experimental techniques are discussed, focusing on nonradiolytic chemical and physical transformations relevant to materials synthesis.

Type
Liquid Phase Electron Microscopy
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhattacharya, P., Du, D., Lin, Y., J. R. Soc. Interface 11, 20131067 (2014).10.1098/rsif.2013.1067CrossRefGoogle Scholar
Cha, C., Shin, S.R., Annabi, N., Dokmeci, M.R., Khademhosseini, A., ACS Nano 7, 2891 (2013).10.1021/nn401196aCrossRefGoogle Scholar
Datta, L.P., Manchineella, S., Govindaraju, T., Biomaterials 230, 119633 (2020).10.1016/j.biomaterials.2019.119633CrossRefGoogle ScholarPubMed
Cui, Y., Li, B., He, H., Zhou, W., Chen, B., Qian, G., Acc. Chem. Res. 49, 483 (2016).10.1021/acs.accounts.5b00530CrossRefGoogle Scholar
Arakaki, A., Shimizu, K., Oda, M., Sakamoto, T., Nishimura, T., Kato, T., Org. Biomol. Chem. 13, 974 (2015).10.1039/C4OB01796JCrossRefGoogle Scholar
Callmann, C.E., Thompson, M.P., Gianneschi, N.C., Acc. Chem. Res. 53, 400 (2020).10.1021/acs.accounts.9b00518CrossRefGoogle Scholar
Stock, N., Biswas, S., Chem. Rev. 112, 933 (2012).10.1021/cr200304eCrossRefGoogle Scholar
Kelley, E.G., Murphy, R.P., Seppala, J.E., Smart, T.P., Hann, S.D., Sullivan, M.O., Epps, T.H., Nat. Commun. 5, 3599 (2014).10.1038/ncomms4599CrossRefGoogle Scholar
Patterson, J.P., Xu, Y., Moradi, M., Sommerdijk, N.A.J.M., Friedrich, H., Acc. Chem. Res. 50, 1495 (2017).10.1021/acs.accounts.7b00107CrossRefGoogle Scholar
Liu, Y., Vancso, G.J., Prog. Polym. Sci. 104, 101232 (2020).10.1016/j.progpolymsci.2020.101232CrossRefGoogle Scholar
Xiao, L., Schultz, Z.D., Anal. Chem. 90, 440 (2018).10.1021/acs.analchem.7b04151CrossRefGoogle Scholar
Patterson, J.P., Robin, M.P., Chassenieux, C., Colombani, O., O'Reilly, R.K., Chem. Soc. Rev. 43, 2412 (2014).10.1039/C3CS60454CCrossRefGoogle Scholar
Jacques, D.A., Trewhella, J., Protein Sci. 19, 642 (2010).10.1002/pro.351CrossRefGoogle Scholar
Li, J., Jiao, A., Chen, S., Wu, Z., Xu, E., Jin, Z., J. Mol. Struct. 1165, 391 (2018).10.1016/j.molstruc.2017.12.031CrossRefGoogle Scholar
Santos, N.C., Domingues, M.M., Front. Chem. 6, 237 (2018).Google Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Ross, F.M., Nat. Mater. 2, 532 (2003).10.1038/nmat944CrossRefGoogle Scholar
Ross, F.M., Liquid Cell Electron Microscopy (Cambridge University Press, Cambridge, UK, 2016).10.1017/9781316337455CrossRefGoogle Scholar
Parent, L.R., Bakalis, E., Proetto, M., Li, Y., Park, C., Zerbetto, F., Gianneschi, N.C., Acc. Chem. Res. 51, 3 (2018).10.1021/acs.accounts.7b00331CrossRefGoogle Scholar
Wu, H., Friedrich, H., Patterson, L.P., Sommerdijk, N.A.J.M., de Jonge, N., Adv. Mater. 2001582 (2020), doi:10.1002/adma.202001582.Google Scholar
Egerton, R.F., Li, P., Malac, M., Micron 35, 399 (2004).CrossRefGoogle Scholar
Textor, M., de Jonge, N., Nano Lett. 18, 3313 (2018).10.1021/acs.nanolett.8b01366CrossRefGoogle Scholar
de Jonge, N., Houben, L., Dunin-Borkowski, R.E., Ross, F.M., Nat. Rev. Mater. 4, 61 (2019).10.1038/s41578-018-0071-2CrossRefGoogle Scholar
Chen, Q., Dwyer, C., Sheng, G., Zhu, C., Li, X., Zheng, C., Zhu, Y., Adv. Mater. 32, 1907619 (2020).10.1002/adma.201907619CrossRefGoogle Scholar
Faruqi, A.R., Mcmullan, G., Nucl. Instrum. Methods Phys. Res. A 878, 180 (2018).CrossRefGoogle Scholar
Baumeister, W., Ultramicroscopy 9, 151 (1982).CrossRefGoogle Scholar
Engel, A., Lyubchenko, Y., Müller, D., Trends Cell Biol. 9, 77 (1999).10.1016/S0962-8924(98)01415-9CrossRefGoogle Scholar
Touve, M.A., Carlini, A.S., Gianneschi, N.C., Nat. Commun. 10, 1 (2019).10.1038/s41467-019-12660-1CrossRefGoogle Scholar
Wang, H., Li, B., Kim, Y.J., Kwon, O.H., Granick, S., Proc. Natl. Acad. Sci. U.S.A. 117, 1283 (2020).CrossRefGoogle Scholar
Liu, M., Zhang, Q., Kannan, B., Botton, G.A., Yang, J., Soleymani, L., Brennan, J.D., Li, Y., Angew. Chem. Int. Ed Engl. 130, 12620 (2018).Google Scholar
Yamazaki, Y., Kimura, Y., Vekilov, P.G., Furukawa, E., Shirai, M., Matsumoto, H., Van Driessche, A.E.S., Tsukamoto, K., Proc. Natl. Acad. Sci. U.S.A. 114, 2154 (2017).CrossRefGoogle Scholar
Nudelman, F., Sommerdijk, N.A.J.M., Angew. Chem. Int. Ed. Engl. 51, 6582 (2012).Google Scholar
Bentov, S., Erez, J., Geochem. Geophys. Geosyst. 7, 1 (2006).CrossRefGoogle Scholar
Root, M.J., Calcif. Tissue Int. 47, 112 (1990).10.1007/BF02555994CrossRefGoogle Scholar
Bentov, S., Weil, S., Glazer, L., Sagi, A., Berman, A., J. Struct. Biol. 171, 207 (2010).10.1016/j.jsb.2010.04.007CrossRefGoogle Scholar
Zou, Z., Yang, X., Albéric, M., Heil, T., Wang, Q., Pokroy, B., Politi, Y., Bertinetti, L., Adv. Funct. Mater. 30, 2000003 (2020).CrossRefGoogle Scholar
Fu, G., Valiyaveettil, S., Wopenka, B., Morse, D.E., Biomacromolecules 6, 1289 (2005).CrossRefGoogle Scholar
Schenk, A.S., Zlotnikov, I., Pokroy, B., Gierlinger, N., Masic, A., Zaslansky, P., Fitch, A.N., Paris, O., Metzger, T.H., Cölfen, H., Adv. Funct. Mater. 22, 4668 (2012).CrossRefGoogle Scholar
Addadi, L., Moradian, J., Shay, E., Maroudas, N.G., Weiner, S.A., Proc. Natl. Acad. Sci. U.S.A. 84, 2732 (1987).10.1073/pnas.84.9.2732CrossRefGoogle Scholar
Kashyap, S., Woehl, T., Liu, X., Mallapragada, S.K., Prozorov, T., ACS Nano 8, 9097 (2014).CrossRefGoogle Scholar
Wang, X., Yang, J., Andrei, C.M., Soleymani, L., Grandfield, K., Commun. Chem. 1, 1 (2018).Google Scholar
Liu, Z., Zhang, Z., Wang, Z., Jin, B., Li, D., Tao, J., Tang, R., De Yoreo, J.J., Proc. Natl. Acad. Sci. U.S.A. 117, 3397 (2020).10.1073/pnas.1914813117CrossRefGoogle Scholar
Su, H., Mehdi, B.L., Patterson, J.P., Sommerdijk, N.A.J.M., Browning, N.D., Friedrich, H., J. Phys. Chem. C 123, 25448 (2019).CrossRefGoogle Scholar
Kröger, R., Verch, A., Minerals 8, 21 (2018).CrossRefGoogle Scholar
Dae, K.S., Chang, J.H., Yuk, J.M., Lee, J.Y., Microsc. Microanal. 23, S1 (2017).Google Scholar
Smeets, P.J.M., Cho, K.R., Kempen, R.G.E., Sommerdijk, N.A.J.M., De Yoreo, J.J., Nat. Mater. 14, 394 (2015).10.1038/nmat4193CrossRefGoogle Scholar
Nielsen, M.H., Aloni, S., De Yoreo, J.J., Science 345, 1158 (2014).CrossRefGoogle Scholar
Nielsen, M.H., Li, D., Zhang, H., Aloni, S., Han, T.Y.-J., Frandsen, C., Seto, J., Banfield, J.F., Cölfen, H., De Yoreo, J.J., Microsc. Microanal. 20, 425 (2014).CrossRefGoogle Scholar
Jehannin, M., Rao, A., Cölfen, H., J. Am. Chem. Soc. 141, 10120 (2019).CrossRefGoogle Scholar
Teng, H.H., Dove, P.M., Orme, C.A., De Yoreo, J.J., Science 282, 724 (1998).CrossRefGoogle Scholar
Cantaert, B., Kuo, D., Matsumura, S., Nishimura, T., Sakamoto, T., Kato, T., ChemPlusChem 82, 107 (2017).CrossRefGoogle Scholar
Wang, D., Wallace, A.F., De Yoreo, J.J., Dove, P.M., Proc. Natl. Acad. Sci. U.S.A. 106, 21511 (2009).10.1073/pnas.0906741106CrossRefGoogle Scholar
Shao, C., Zhao, R., Jiang, S., Yao, S., Wu, Z., Jin, B., Yang, Y., Pan, H., Tang, R., Adv. Mater. 30, 1704876 (2018).10.1002/adma.201704876CrossRefGoogle Scholar
Matsumura, S., Kajiyama, S., Nishimura, T., Kato, T., Small 11, 5127 (2015).CrossRefGoogle ScholarPubMed
Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F., De Yoreo, J.J., Science 336, 1014 (2012).10.1126/science.1219643CrossRefGoogle Scholar
Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U., Alivisatos, P., Science 324, 1309 (2009).10.1126/science.1172104CrossRefGoogle Scholar
Eanes, E.D., Termine, J.D., Nylen, M.U., Calcif. Tissue Res. 12, 143 (1973).10.1007/BF02013730CrossRefGoogle Scholar
Patterson, J.P., Abellan, P., Denny, M.S., Park, C., Browning, N.D., Cohen, S.M., Evans, J.E., Gianneschi, N.C., J. Am. Chem. Soc. 137, 7322 (2015).10.1021/jacs.5b00817CrossRefGoogle Scholar
Zhu, Y., Ciston, J., Zheng, B., Miao, X., Czarnik, C., Pan, Y., Sougrat, R., Nat. Mater. 16, 53 (2017).Google Scholar
Wiktor, C., Meledina, M., Turner, S., Lebedev, O.I., Fischer, R.A., J. Mater. Chem. A 5, 14969 (2017).Google Scholar
Schneider, N.M., Norton, M.M., Mendel, B.J., Grogan, J.M., Ross, F.M., Bau, H.H., J. Phys. Chem. C 118, 22373 (2014).Google Scholar
Woehl, T.J., Abellan Baeza, P., J. Microsc. 265, 135 (2017).10.1111/jmi.12508CrossRefGoogle Scholar
Dainton, F.S., Salmon, G.A., Wardman, P., Proc. R. Soc. Lond. A Math. Phys. Sci. 313, 1 (1969).Google Scholar
Baxendale, J.H., Wardman, P., The Radiolysis of Methanol: Product Yields, Rate Constants, and Spectroscopic Parameters of Intermediates, National Standard Reference Data Series, National Bureau of Standards, 54 (1975).Google Scholar
Park, C., Woehl, T.J., Evans, J.E., Browning, N.D., IEEE Trans. Pattern Anal. Mach. Intell. 37, 611 (2015).10.1109/TPAMI.2014.2346202CrossRefGoogle Scholar
Smith, B.J., Parent, L.R., Overholts, A.C., Beaucage, P.A., Bisbey, R.P., Chavez, A.D., Hwang, N., Park, C., Evans, A.M., Gianneschi, N.C., Dichtel, W.R., ACS Cent. Sci. 3, 58 (2017).CrossRefGoogle Scholar
Smith, B.J., Dichtel, W.R., J. Am. Chem. Soc. 136, 8783 (2014).CrossRefGoogle Scholar
Evans, A.M., Parent, L.R., Flanders, N.C., Bisbey, R.P., Vitaku, E., Kirschner, M.S., Schaller, R.D., Chen, L.X., Gianneschi, N.C., Dichtel, W.R., Science 361, 52 (2018).CrossRefGoogle Scholar
Smith, B.J., Hwang, N., Chavez, A.D., Novotney, J.L., Dichtel, W.R., Chem. Commun. 51, 7532 (2015).CrossRefGoogle Scholar
Evans, A.M., Parent, L.R., Flanders, N.C., Bisbey, R.P., Vitaku, E., Kirschner, M.S., Schaller, R.D., Chen, L.X., Gianneschi, N.C., Dichtel, W.R., Science 361, 52 (2018).CrossRefGoogle Scholar
De Penhoat, M.A.H., Goulet, T., Frongillo, Y., Fraser, M.J., Bernat, P., Jay-Gerin, J.P., J. Phys. Chem. A 104, 11757 (2000).10.1021/jp001662dCrossRefGoogle Scholar
Vailonis, K.M., Gnanasekaran, K., Powers, X.B., Gianneschi, N.C., Jenkins, D.M., J. Am. Chem. Soc. 141, 10177 (2019).10.1021/jacs.9b04586CrossRefGoogle Scholar
Lyu, J., Gong, X., Lee, S., Gnanasekaran, K., Zhang, X., Wasson, M.C., Wang, X., Bai, P., Guo, X., Gianneschi, N.C., Farha, O.K., J. Am. Chem. Soc. 142, 4609 (2020).10.1021/jacs.0c00542CrossRefGoogle Scholar
Early, J.T., Yager, K.G., Lodge, T.P., ACS Macro Lett. 9 (5), 756 (2020).10.1021/acsmacrolett.0c00273CrossRefGoogle Scholar
Li, C., Tho, C.C., Galaktionova, D., Chen, X., Král, P., Mirsaidov, U., Nanoscale 11 (5), 2299 (2019).CrossRefGoogle ScholarPubMed
Parent, L.R., Bakalis, E., Ramirez-Hernandez, A., Kammeyer, J.K., Park, C., de Pablo, J., Zerbetto, F., Patterson, J.P., Gianneschi, N.C., J. Am. Chem. Soc. 139 (47), 17140 (2017).10.1021/jacs.7b09060CrossRefGoogle Scholar
Ianiro, A., Wu, H., van Rijt, M.M.J., Vena, M.P., Keizer, A.D.A., Esteves, A.C.C., Tuinier, R., Friedrich, H., Sommerdijk, N., Patterson, J.P., Nat. Chem. 11 (4), 320 (2019).10.1038/s41557-019-0210-4CrossRefGoogle Scholar