Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T21:51:52.136Z Has data issue: false hasContentIssue false

Changes in short- and medium-range order in metallic liquids during undercooling

Published online by Cambridge University Press:  10 November 2020

M.J. Kramer
Affiliation:
Materials Science and Engineering Division, US Department of Energy Ames Laboratory, USA; mjkramer@ameslab.gov
Mo Li
Affiliation:
Georgia Institute of Technology, USA; mo.li@mse.gatech.edu
Get access

Abstract

It has been widely speculated that dominant motifs, such as short-range icosahedral order, can influence glass formation and the properties of glasses. Experimental data on both fragile and strong undercooled liquids show corresponding changes in their thermophysical properties consistent with increasing development of a network of interconnect motifs based on molecular dynamics. Describing these regions of local order, how they connect, and how they are related to property changes have been challenging issues, both computationally and experimentally. Yet the consensus is that metallic liquids develop interconnected medium-range order consisting of some regions with lower mobility with deeper undercooling. Less well understood is how these motifs (or “crystal genes”) in the liquid can inhibit nucleation in the deeply undercooled liquid or influence phase selection upon devitrification. These motifs tend to have local packing unlike stable compounds with icosahedral order tending to dominate the best glass formers. The underlying kinetic and thermodynamic forces that guide the formation of these motifs and how they interconnect during undercooling remain open questions.

Type
Processing Metallic Materials Far from Equilibrium
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kruzic, J.J., Adv. Eng. Mater. 18 (8), 1308 (2016).10.1002/adem.201600066CrossRefGoogle Scholar
Lee, H.J., Cagin, T., Johnson, W.L., Goddard, W.A., J. Chem Phys. 119 (18), 9858 (2003).Google Scholar
Miracle, D.B., Senkov, O.N., Mater. Sci. Eng. A A347 (1), 50 (2003).Google Scholar
Miracle, D.B., Nat. Mater. 3, 697 (2004).Google Scholar
Lv, Y.J., Chen, M., Int. J Mol. Sci. 12 (1), 278 (2011).Google Scholar
Ilbagi, A., Khatibi, P.D., Henein, H., Gandin, C.A., Herlach, D.M., Proc. 1st Int. Conf. 3d Mater. Sci. 67 (2012).Google Scholar
Lu, Z.P., Shen, J., Xing, D.W., Sun, J.F., Liu, C.T., Appl. Phys. Lett. 89 (7), 071910 (2006).Google Scholar
Wen, T.Q., Sun, Y., Ye, B.L., Tang, L., Yang, Z.J., Ho, K.M., Wang, C.Z., Wang, N., J. Appl. Phys. 123 (4), 045108 (2018).Google Scholar
Xiong, L.H., Wang, X.D., Yu, Q., Zhang, H., Zhang, F., Sun, Y., Cao, Q.P., Xie, H.L., Xiao, T.Q., Zhang, D.X., Wang, C.Z., Ho, K.M., Ren, Y., Jiang, J.Z., Acta Mater. 128, 304 (2017).10.1016/j.actamat.2017.02.038CrossRefGoogle Scholar
Yildirim, C., Kutsal, M., Ott, R.T., Besser, M.F., Kramer, M.J., Kalay, Y.E., Mater. Des. 112, 479 (2016).CrossRefGoogle Scholar
Mauro, N.A., Fu, W., Bendert, J.C., Cheng, Y.Q., Ma, E., Kelton, K.F., J. Chem. Phys. 137 (4) (2012).Google Scholar
Ronhovde, P., Chakrabarty, S., Hu, D., Sahu, M., Sahu, K.K., Kelton, K.F., Mauro, N.A., Nussinov, Z., Eur. Phys. J. E 34 (9), 105 (2011).10.1140/epje/i2011-11105-9CrossRefGoogle Scholar
Liu, X.J., Xu, Y., Lu, Z.P., Hui, X., Chen, G.L., Zheng, G.P., Liu, C.T., Acta Mater. 59 (16), 6480 (2011).10.1016/j.actamat.2011.07.012CrossRefGoogle Scholar
Lee, M., Lee, C.M., Lee, K.R., Ma, E., Lee, J.C., Acta Mater. 59 (1), 159 (2011).CrossRefGoogle Scholar
Georgarakis, K., Louzguine-Luzgin, D.V., Antonowicz, J., Vaughan, G., Yavari, A.R., Egami, T., Inoue, A., Acta Mater. 59 (2), 708 (2011).Google Scholar
Liu, X.J., Xu, Y., Hui, X., Lu, Z.P., Li, F., Chen, G.L., Lu, J., Liu, C.T., Phys. Rev. Lett. 105 (15), 155501 (2010).10.1103/PhysRevLett.105.155501CrossRefGoogle Scholar
Angell, C.A., Science 267 (5206), 1924 (1995).Google Scholar
Busch, R., Schroers, J., Wang, W.H., MRS Bull. 32 (8), 620 (2007).Google Scholar
Angell, C.A., MRS Bull. 33 (5), 544 (2008).CrossRefGoogle Scholar
Takeuchi, A., Kato, H., Inoue, A., Intermetallics 18 (4), 406 (2010).Google Scholar
Way, C., Wadhwa, P., Busch, R., Acta Mater. 55 (9), 2977 (2007).Google Scholar
Kelton, K.F., Gangopadhyay, A.K., Powder Diffr. 20 (2), 87 (2005).Google Scholar
Stolpe, M., Jonas, I., Wei, S., Evenson, Z., Hembree, W., Yang, F., Meyer, A., Busch, R., Phys. Rev. B 93 (1), 014201 (2016).Google Scholar
Wei, S., Stolpe, M., Gross, O., Hembree, W., Hechler, S., Bednarcik, J., Busch, R., Lucas, P., Acta Mater. 129, 259 (2017).Google Scholar
Ito, K., Moynihan, C.T., Angell, C.A., Nature 398 (6727), 492 (1999).10.1038/19042CrossRefGoogle Scholar
Inoue, A., Shen, B.L., Takeuchi, A., Mater. Sci. Eng. A 441 (1), 18 (2006).10.1016/j.msea.2006.02.416CrossRefGoogle Scholar
Wen, H., Cherukara, M.J., Holt, M.V., Ann. Rev. Mater. Res. 49 (1), 389 (2019).Google Scholar
Gangopadhyay, A.K., Lee, G.W., Kelton, K.F., Rogers, J.R., Goldman, A.I., Robinson, D.S., Rathz, T.J., Hyers, R.W., Rev. Sci. Instrum. 76 (7), 073901 (2005).Google Scholar
Holland-Moritz, D., Schenk, T., Convert, P., Hansen, T., Herlach, D.M., Meas. Sci. Technol. 16 (2), 372 (2005).Google Scholar
Hirata, A., Guan, P., Fujita, T., Hirotsu, Y., Inoue, A., Yavari, A.R., Sakurai, T., Chen, M., Nat. Mater. 10 (1), 28 (2011).Google Scholar
Egami, T., Billinge, S.J.L., Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 1st ed. (Pergamon Press, Oxford, UK, 2003), p. 404.Google Scholar
Treacy, M.M.J., Gibson, J.M., Fan, L., Paterson, D.J., McNulty, I., Rep. Prog. Phys. 68 (12), 2899 (2005).Google Scholar
Liu, A.C.Y., Neish, M.J., Stokol, G., Buckley, G.A., Smillie, L.A., de Jonge, M.D., Ott, R.T., Kramer, M.J., Bourgeois, L., Phys. Rev. Lett. 110 (20), 205505 (2013).Google Scholar
He, L., Zhang, P., Besser, M.F., Kramer, M.J., Voyles, P.M., Microsc. Microanal. 21 (4), 1026 (2015).CrossRefGoogle Scholar
Zhang, P., He, L., Besser, M.F., Liu, Z., Schroers, J., Kramer, M.J., Voyles, P.M., Ultramicroscopy 178, 125 (2017).Google Scholar
Chen, S.P., Egami, T., Vitek, V., Phys. Rev. B 37 (5), 2440 (1988).Google Scholar
Kob, W., Andersen, H.C., Phys. Rev. Lett. 73 (10), 1376 (1994).Google Scholar
Woodcock, L.V., Ann. N.Y. Acad. Sci. 371 (1), 274 (1981).Google Scholar
Steinhardt, P.J., Nelson, D.R., Ronchetti, M., Phys. Rev. B 28 (2), 784 (1983).10.1103/PhysRevB.28.784CrossRefGoogle Scholar
Kresse, G., Hafner, J., Phys. Rev. B 49 (20), 14251 (1994).Google Scholar
Lekka, Ch.E., Ibenskas, A., Yavari, A.R., Evangelakis, G.A., Appl. Phys. Lett. 91 (21), 214103 (2007).Google Scholar
Sheng, H.W., Ma, E., Kramer, M.J., JOM 64 (7), 856 (2012).Google Scholar
Finney, J.L., Proc. R. Soc. Lond. A 319 (1539), 479 (1970).Google Scholar
Steinhardt, P.J., Nelson, D.R., Ronchetti, M., Phys. Rev. Lett. 47 (18), 1297 (1981).10.1103/PhysRevLett.47.1297CrossRefGoogle Scholar
Honeycutt, J.D., Andersen, H.C., J. Phys. Chem. 90 (8), 1585 (1986).Google Scholar
Egami, T., Tomida, T., Kulp, D., Vitek, V., J. Non Cryst. Solids 156, 63 (1993).Google Scholar
Fang, X.W., Wang, C.Z., Yao, Y.X., Ding, Z.J., Ho, K.M., Phys. Rev. B 82 (18), 184204 (2010).10.1103/PhysRevB.82.184204CrossRefGoogle Scholar
Fang, X.W., Wang, C.Z., Hao, S.G., Kramer, M.J., Yao, Y.X., Mendelev, M.I., Ding, Z.J., Napolitano, R.E., Ho, K.M., Sci. Rep. 1, 194 (2011).10.1038/srep00194CrossRefGoogle Scholar
Frank, F.C., Proc. R. Soc. Lond. A 215 (1120), 43 (1952).Google Scholar
Briant, C.L., Burton, J.J., Phys. Status Solidi B 85 (1), 393 (1978).CrossRefGoogle Scholar
Spaepen, F., Nature 408 (6814), 781 (2000).10.1038/35048652CrossRefGoogle Scholar
Walter, J.L., Bartram, S.F., Russell, R.R., Met. Trans. A 9A, 803 (1978).10.1007/BF02649789CrossRefGoogle Scholar
Hays, C.C., Kim, C.P., Johnson, W.L., Appl. Phys. Lett. 75 (8), 1089 (1999).10.1063/1.124606CrossRefGoogle Scholar
Mattern, N., Vainio, U., Park, J.M., Han, J.H., Shariq, A., Kim, D.H., Eckert, J., J. Alloys Compd. 509, S23 (2011).Google Scholar
Schneider, S., Thiyagarajan, P., Johnson, W.L., Appl. Phys. Lett. 68 (4), 493 (1996).Google Scholar
Mendelev, M.I., Sordelet, D.J., Kramer, M.J., J. Appl. Phys. 102 (4), 043501 (2007).10.1063/1.2769157CrossRefGoogle Scholar
Mendelev, M.I., Kramer, M.J., Ott, R.T., Sordelet, D.J., Philos. Mag. 89 (2), 109 (2009).CrossRefGoogle Scholar
Zhang, Y., Zhang, F., Wang, C.Z., Mendelev, M.I., Kramer, M.J., Ho, K.M., Phys. Rev. B 91 (6), 064105 (2015).Google Scholar
Zhang, Y., Wang, C.Z., Mendelev, M.I., Zhang, F., Kramer, M.J., Ho, K.M., Phys. Rev. B 91 (18), 180201 (2015).Google Scholar
Faupel, F., Frank, W., Macht, M.-P., Mehrer, H., Naundorf, V., Rätzke, K., Schober, H.R., Sharma, S.K., Teichler, H., Rev. Mod. Phys. 75 (1), 237 (2003).Google Scholar
Huang, Y.X., Huang, L., Wang, C.Z., Kramer, M.J., Ho, K.M., J. Phys. Condens. Matter 28 (8), 085102 (2016).CrossRefGoogle Scholar
Hwang, J., Melgarejo, Z.H., Kalay, Y.E., Kalay, I., Kramer, M.J., Stone, D.S., and Voyles, P.M., Phys. Rev. Lett. 108 (19), 195505 (2012).Google Scholar
McGreevy, R.L., Pusztai, L., Mol. Simul. 1 (6), 359 (1988).Google Scholar
Pusztai, L., Svab, E., J. Phys. Condens. Matter 5 (47), 8815 (1993).Google Scholar
M.I. Mendelev, M.J. Kramer, J. Appl. Phys. 107 (7), 2010.Google Scholar
Baskes, M.I., Nelson, J.S., Wright, A.F., Phys. Rev. B 40 (9), 6085 (1989).Google Scholar
Nelson, D.R., Widom, M., Nucl. Phys. B 240 (1), 113 (1984).Google Scholar
Finney, J.L., Nature 266 (5600), 309 (1977).10.1038/266309a0CrossRefGoogle Scholar
Coxeter, H.S.M., Regular Polytopes (3rd ed.) (Dover, New York, 1973).Google Scholar
Jalali, P., Li, M., Phys. Rev. B 71 (1), 014206 (2005).CrossRefGoogle Scholar
Huang, P.Y., Kurasch, S., Srivastava, A., Skakalova, V., Kotakoski, J., Krasheninnikov, A.V., Hovden, R., Mao, Q., Meyer, J.C., Smet, J., Muller, D.A., Kaiser, U., Nano Lett. 12 (2), 1081 (2012).Google Scholar
Li, Q.K., Li, M., Chin. Sci. Bull. 56 (36), 3897 (2011).Google Scholar
Mendelev, M.I., Kramer, M.J., Ott, R.T., Sordelet, D.J., Yagodin, D., Popel, P., Philos. Mag. 89 (11), 967 (2009).CrossRefGoogle Scholar
Huett, V.T., Kelton, K.F., Appl. Phys. Lett. 81 (6), 1026 (2002).10.1063/1.1497724CrossRefGoogle Scholar
Perepezko, J.H., Mater. Sci. Eng. A 413, 389 (2005).Google Scholar
Kelton, K.F., Intermetallics 14 (8), 966 (2006).CrossRefGoogle Scholar
Fan, C., Yang, X., Tang, Z., Liu, C.T., Chen, G., Liaw, P.K., Yan, H.G., Chen, G., Intermetallics 49, 36 (2014).Google Scholar
Kalay, I., Kramer, M., Napolitano, R., Metall. Mater. Trans. A 46, 3356 (2015).10.1007/s11661-015-2921-5CrossRefGoogle Scholar
Holland-Moritz, D., Stuber, S., Hartmann, H., Unruh, T., Hansen, T., Meyer, A., Phys. Rev. B 79 (6), 064204 (2009).CrossRefGoogle Scholar
Kalay, Y.E., Kalay, I., Hwang, J., Voyles, P.M., Kramer, M.J., Acta Mater. 60 (3), 994 (2012).Google Scholar
Inoue, A., Takeuchi, A., Proc. Metastab. Nanostruct. Mater. 403, 1 (2002).Google Scholar
Louzguine-Luzgin, D.V., Yavari, A.R., Fukuhara, M., Ota, K., Xie, G.Q., Vaughan, G., Inoue, A., J. Alloys Compd. 431 (1), 136 (2007).10.1016/j.jallcom.2006.05.069CrossRefGoogle Scholar
Johnson, W.L., MRS Bull. 24, 42 (1999).10.1557/S0883769400053252CrossRefGoogle Scholar
Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M., Sakurai, T., Mater. Trans. JIM 40, 1137 (1999).Google Scholar