Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T11:05:31.310Z Has data issue: false hasContentIssue false

Biomineralization and biotransformations of actinide materials

Published online by Cambridge University Press:  31 January 2011

Mary P. Neu
Affiliation:
Los Alamos National Laboratory, NM 87545, USA; mneu@lanl.gov
Hakim Boukhalfa
Affiliation:
Los Alamos National Laboratory, NM 87545, USA; hakim@lanl.gov
Mohamed L. Merroun
Affiliation:
University of Granada, Spain; merroun@ugr.es
Get access

Abstract

Microorganisms moderate local chemical conditions and alter forms of metals indirectly or directly to meet their cellular, species, and consortia needs. The diversity of microorganisms and the complexity of biogeochemical systems ensures that bacterially mediated processes yield a wide range of products, which await discovery by material scientists. Few types of materials produced by environmental bacteria have been analyzed by modern chemical and material science methods. Research on actinide biomaterials has focused on the biomineralization of a few chemical forms of uranium, neptunium, and plutonium. The materials produced are molecular complexes, microcrystalline minerals (most commonly oxides and phosphates) within cells and biofilms, and mineral adsorbates. The actinide biomaterials that emerge from this new research area will impact nuclear waste isolation and increase our understanding of environmental and geological metal cycles and may yield new bioremediation methods and industrially useful materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Neu, M.P., Icopini, G.A., Boukhalfa, H., Radiochim. Acta 93 (11), 705 (2005).CrossRefGoogle Scholar
2.Linfeng, R., Zhicheng, Z., PierLuigi, Z., Plinio, D.B., Bismondoc, A., Clark, S.B., J. Chem. Soc. Dalton Trans. 18, 2867 (2004).Google Scholar
3.Schild, D.M., Radiochim. Acta 88 (9–11), 587 (2000).CrossRefGoogle Scholar
4.Boukhalfa, H., Reilly, S.D., Neu, M.P., Inorg. Chem. 46 (3), 1018 (2007).CrossRefGoogle Scholar
5.Merroun, M.L., Hennig, C., Rossberg, A., Reich, T., Selenska-Pobell, S., Radiochim. Acta 91, 583 (2003).CrossRefGoogle Scholar
6.Fowle, D.A., Fein, J.B., Martin, A.M., Environ. Sci. Technol. 34, 3737 (2000).CrossRefGoogle Scholar
7.Kelly, S.D., Kemner, K.M., Fein, J.B., Fowle, D.A., Boyanov, M.I., Bunker, B.A., Yee, N., Geochim. Cosmochim. Acta 65, 3855 (2002).CrossRefGoogle Scholar
8.Merroun, M.L., Raff, J., Rossberg, A., Hennig, C., Reich, T., Selenska-Pobell, S., Appl. Environ. Microbiol. 71, 5532 (2005).CrossRefGoogle Scholar
9.Panak, P.J., Booth, C.H., Caulder, D.L., Bucher, J.J., Shuh, D.K., Nitsche, H., Radiochim. Acta 90 (6), 315 (2002).CrossRefGoogle Scholar
10.Gorman-Lewis, D., Fein, J.B., Soderholm, L., Jensen, M.P., Chiang, M.H., Geochim. Cosmochim. Acta 15, 4844 (2005).Google Scholar
11.Koban, A., Geipel, A., Bernhard, G., Radiochim. Acta 92, 903 (2004).CrossRefGoogle Scholar
12.Jroundi, F., Merroun, M.L., Arias, J.M., Rossberg, A., Selenska-Pobell, S., González-Muñoz, M.T., Geomicrobiol. J. 24, 441 (2007).CrossRefGoogle Scholar
13.Merroun, M.L., Selenska-Pobell, S., J. Contam. Hydrol. 102, 285 (2008).CrossRefGoogle Scholar
14.Arnold, T., Grossmann, K., Baumann, N., Bioanal. Chem. 396 (5), 1641 (2010).CrossRefGoogle Scholar
15.Harper, R.M., Kantar, C., Honeyman, B.D., Radiochim. Acta 96 (9–11), 753 (2008).CrossRefGoogle Scholar
16.John, S.G., Ruggiero, C.E., Hersman, L.E., Tung, C.-S., Neu, M.P., Environ. Sci. Technol. 35, 2942 (2001).CrossRefGoogle Scholar
17.Johnsson, A., Ödegaard-Jensen, A., Jakobsson, A.-M., J. Radioanal. Nucl. Chem. 277 (3), 637 (2008).CrossRefGoogle Scholar
18.Kalinowski, B.E., Albinsson, Y., Geoderma 122 (2–4), 177 (2004).CrossRefGoogle Scholar
19.Johnsson, A., Ödegaard-Jensen, A., Skarnemark, G., J. Radioanal. Nucl. Chem. 279, 619 (2009).CrossRefGoogle Scholar
20.Choi, D.W., Do, Y.S., Zea, C.J., McEllistrem, M.T., Lee, S.W., Semrau, J.D., Pohl, N.L., Kisting, C.J., Scardino, L.L., Hartsel, S.C., Boyd, E.S., Geesey, G.G., Riedel, T.P., Shafe, P.H., Kranski, K.A., Tritsch, J.R., Antholine, W.E., DiSpirito, A.A., J. Inorg. Biochem. 100, 2150 (2006).CrossRefGoogle Scholar
21.Suzuki, Y., Banfield, J.F., Rev. Mineral. Geochem. 38, 393 (1999).Google Scholar
22.DiSpirito, A.A., Talnagi, J.W. Jr, Tuovinen, O.H., Arch. Microbiol. 135, 250 (1983).CrossRefGoogle Scholar
23.Suzuki, Y., Banfield, J.F., Geomicrobiol. J. 21, 113 (2004).CrossRefGoogle Scholar
24.Merroun, M.L., Nedelkova, M., Rossberg, A., Hennig, C., Selenska-Pobell, S., Radiochim. Acta 94, 723 (2006).CrossRefGoogle Scholar
25.Nedelkova, M., Merroun, M.L., Hennig, C., Selenska-Pobell, S., Rossberg, A., FEMS Microbiol. Ecol. 59, 694 (2007).CrossRefGoogle Scholar
26.Keasling, J.D., Hupf, G.A., Appl. Environ. Microbiol. 62, 743 (1996).CrossRefGoogle Scholar
27.Selenska-Pobell, S., Merroun, M.L., in Prokaryotic Cell Wall Components—Structure and Biochemistry (Springer-Verlag, Berlin, Heidelberg, 2010), pp. 483500.CrossRefGoogle Scholar
28.Renninger, N., Knopp, R., Nitsche, H., Clark, D.S., Keasling, J.D., Appl. Environ. Microbiol. 70, 7404 (2004).CrossRefGoogle Scholar
29.Lovley, D.R., Phillips, E.J.P., Environ. Sci. Technol. 26 (11), 2228 (1992).CrossRefGoogle Scholar
30.Marshall, M.J., Beliaev, A.S., Dohnalkova, A.C., Kennedy, D.W., Shi, L., Wang, Z.M., Boyanov, M.I., Lai, B., Kemner, K.M., McLean, J.S., Reed, S.B., Culley, D.E., Bailey, V.L., Simonson, C.J., Saffarini, D.A., Romine, M.F., Zachara, J.M., Fredrickson, J.K., PloS Biol. 4 (8), 1324 (2006).CrossRefGoogle Scholar
31.Kashefi, K., Moskowitz, B.M., Lovley, D.R., Geobiology 6 (2), 147 (2008).CrossRefGoogle Scholar
32.Schofield, E.J., Veeramani, H., Sharp, J.O., Suvorova, E., Bernier-Latmani, R., Stahlman, A.J., Webb, S.M., Clark, D.L., Conradson, S.D., Ilton, E.S., Bargar, J.R., Environ. Sci. Technol. 42 (21), 7898 (2008).CrossRefGoogle Scholar
33.Burgos, W.D., McDonough, J.T., Senko, J.M., Zhang, G., Dohnalkova, A.C., Kelly, S.D., Gorby, Y., Kemner, K.M., Geochim. Cosmochim. Acta 72 (20), 4901 (2008).CrossRefGoogle Scholar
34.Boukhalfa, H., Icopini, G.A., Reilly, S.D., Neu, M.P., Appl. Environ. Microbiol. 73, 5897 (2007).CrossRefGoogle Scholar
35.Icopini, G.A., Boukhalfa, H., Neu, M.P., Environ. Sci. Technol. 41 (8), 2764 (2007)CrossRefGoogle Scholar
36.Lloyd, J., Yong, P., Macaskie, L., Environ. Sci. Technol. 34, 1297 (2000).CrossRefGoogle Scholar
37.O'Loughlin, E.J., Kelly, S.D., Kemner, K.M., Environ. Sci. Technol. 44 (5), 1556 (2010).Google Scholar
38.Kelly, S.D., Kemner, K.M., Carley, J., Carley, J., Criddle, C., Jardine, P.M., Marsh, T.L., Phillips, D., Watson, D., Wu, W.M., Environ. Sci. Technol. 42 (5), 1558 (2008).CrossRefGoogle Scholar
39.Zheng-Ji, Y., Kai-Xuan, T., Yi, T., Ai-Li, T., Zhen-Xun, Y., Shi-Qiang, W., Int. Biodeterior Biodegradation 60, 258 (2007).Google Scholar
40.Ortiz-Bernad, I., Anderson, R.T., Vrionis, H.A., Lovley, D.R., Appl. Environ. Microbiol. 70 (12), 7558 (2004).CrossRefGoogle Scholar
41.O'Loughlin, E.J., Kelly, S.D., Csencsits, R., Cook, R.E., Kemner, K.M., Environ. Sci. Technol. 37 (4), 721 (2003).CrossRefGoogle Scholar
42.Veeramani, H., Schofield, E.J., Sharp, J.O., Suvorova, E.I., Ulrich, K.U., Mehta, A., Giammar, D.E., Bargar, J.R., Bernier-Latmani, R., Environ. Sci. Technol. 43 (17), 6541 (2009).CrossRefGoogle Scholar
43.Frazier, S.W., Kretzschmar, R., Kraemer, S.M., Environ. Sci. Technol. 39 (15) 5709 (2005).CrossRefGoogle Scholar
44.Beazley, M.J., Martinez, R.J., Sobecky, P.A., Webb, S.M., Taillefert, M., Geomicrobiol. J. 26 (7), 431 (2009).CrossRefGoogle Scholar