Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T09:45:17.878Z Has data issue: false hasContentIssue false

Bioactive Polymer Surface Modifications for Artificial Blood Vessels and Intraocular Lenses

Published online by Cambridge University Press:  17 June 2015

Get access

Extract

The use of artificial materials in medicine is increasing. The most important and common reason for their use is to replace tissue that has become damaged or destroyed through some pathological process, for example, destruction or degeneration of bones, joints, ocular lenses, heart valves, and arteries. Artificial materials are also indicated for medical applications that support or monitor more complex body functions, for example, cardiac pacemakers, dialysis membranes for extracorporeal gas or fluid exchange, and biosensors. The research for appropriate materials is determined by the desired function of the medical device (biofunctionality) and by the biological response to these materials o (biocompatibility).

According to different functional and biological requirements, a huge variety of different materials are currently in use. Metals and alloys-particularly stainless steel, titanium, and cobalt chromium alloys—and different ceramics, such as alumina and calcium phosphates, are used for bone and joint replacement. Different polymers, including polypropylene, poly(tetrafluoroethylene) (PTFE), polyesters, and polyurethanes, are applied for sutures, soft tissue augmentation, and vascular prostheses. Silicones and poly(methyl methacrylate) (PMMA) are used for intraocular lenses. Membranes of regenerated cellulose were the most widely used hemodialysis membranes, but in the recent decades, several attempts were made to replace cellulose with alternative polymers in order to improve blood compatibility-particularly polyacrylonitrile, polycarbonate, PMMA, and polysulfone.

However, today there remain problems of both biocompatibility and biofunctionality. Clinically, the main problems emerge from interactions between materials and the local tissue environment, as summarized in Table I. To ensure a maximum of biocompatibility and functionality, the material in vivo should not evoke any of the reactions outlined in Table I. Today, none of the classical materials fulfills this high demand.

Type
Aspects of Reconstructive Biomaterials
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Williams, D. and Cahn, R.W., eds., Concise Encyclopedia of Medical and Dental Materials, 1st ed. (Pergamon Press, NY, 1980) p. 51.Google Scholar
2. Blakemore, A. and Voorhees, A.B., Ann. Surg. 140 (1954) p. 324.Google Scholar
3. Callow, A.D., in Endotheliazation of Vascular Grafts, edited by Zilia, P.P., Fasol, R.D., and Deutsch, M. (S. Karger Publishers, Basel, 1987) p. 10.Google Scholar
4. Esquivel, C.O. and Blaisdell, F.W., J. Surg. Res. 41 (1986) p. 1.CrossRefGoogle Scholar
5. Jarrell, B.E., Williams, S.K., Hoch, J.R., and Carabasi, R.A., Bull. N.Y. Acad. Med. 63 (1987) p. 156.Google Scholar
6. Chard, R.B., Johnson, D.C., Nunn, G.R., and Carmill, T.B., J. Thorac. Cardiovasc. Surg. 94 (1987) p. 132.CrossRefGoogle Scholar
7. Eberhart, R.C., Hou, H.H., and Nelson, K., MRS Bull. XVI (1991) p. 50.Google Scholar
8. Berger, K., Sauvage, L.R., Rao, A.M., and Wood, S.J., Ann. Surg. 175 (1972) p. 118.CrossRefGoogle Scholar
9. Sauvage, L.R., Berger, K., Beilin, L.B., Smith, J., Wood, S.J., and Mansfield, P.B., Ann. Surg. 182 (1975) p. 749.CrossRefGoogle Scholar
10. Weksler, B.B., Marcus, A.J., and Jaffe, E.A., Proc. Natl. Acad. Sci. U.S.A. 74 (1977) p. 3922.CrossRefGoogle Scholar
11. Chan, V. and Chan, T.K., Thromb. Res. 5 (1979) p. 209.CrossRefGoogle Scholar
12. Levin, E.G. and Loskutoff, D.J., J. Cell Biol. 94 (1982) p. 631.Google Scholar
13. Gross, J.L., Moscatelli, D., Jaffe, E.A., and Rifkin, D.B., J. Cell Biol. 95 (1982) p. 974.CrossRefGoogle Scholar
14. Stern, D., Brett, J., Harris, K., and Nawroth, P., J. Cell. Biol. 102(1986) p. 1971.CrossRefGoogle Scholar
15. Jaffe, E.A., Hum. Pathol. 18 (1987) p. 234.Google Scholar
16. Fajardo, L.F., Am. J. Clin. Pathol. 92 (1989) p. 241.Google Scholar
17. Jaffe, E.A., Nachman, R.L., Becker, C.G., and Minick, C.R., J. Clin. Invest. 52 (1973) p. 2745.CrossRefGoogle Scholar
18. Herring, M.B., Gardner, A.L., and Glover, J., J. Surg. 84 (1978) p. 498.Google Scholar
19. Graham, L.M., Burkel, W.E., Ford, J.W., Vinter, D.W., Kahn, R.H., and Stanley, J.C, Arch. Surg. 115 (1980) p. 1289.Google Scholar
20. Hunter, T.J., Schmidt, S.P, Sharp, W.V., and Malindzak, G. S., Trans. Am. Soc. Artific. Intern. Organs 29 (1983) p. 177.Google Scholar
21. Schmidt, S.P., Sharp, W.V., Evancho, M.M., and Meerbaum, S.O., in High Performance Bio-materials, edited by Szycher, M. (Technomic AG Publishers, Lancaster, PA, 1991) p. 483.Google Scholar
22. Graham, L.M., Burkel, W.E., Ford, J.W., Vinter, D.W., Kahn, R.H., and Stanley, J.C, Surgery 91 (1982) p. 550.Google Scholar
23. Zilia, P., Fasol, R., Kadletz, M., Preiss, P., Groscurth, P., Schima, H., Tsangaris, S., Moser, R., Herold, C., Griesmacher, A., Mostbeck, G., Deutsch, M., and Wolner, B., in Endotheliazation of Vascular Crafts, edited by Zilia, P.P., Fasol, R.D., and Deutsch, M. (S. Karger Publishers, Basel, 1987) p. 195.Google Scholar
24. Kirckpatrick, C.J., Mueller-Schulte, D., Roye, M., Hollweg, G., Gossen, C., Richter, H., and Mittermayer, C.H., Cells. Mater. 1 (1991) p. 93.Google Scholar
25. Zilia, P., Preiss, P., Groscurth, P., Rosemeier, F., Deutsch, M., Odell, J., Heidinger, C., Fasol, R., and von-Oppell, U., Surgery 116 (1994) p. 524.Google Scholar
26. Anderheiden, D., Klee, D., Heller, B., Richter, H., Mittermayer, C., and Höcker, H., “Surface Modification of a Biocompatible Polymer Based on Polyurethane for Artificial Blood Vessels,” presented at Biomat. 90: Polymers and Immobilized Cells or Biomolecules, Bordeaux, France, December 12–14, 1990.Google Scholar
27. Anderheiden, D., Trommler, D., Heller, H., Klee, D., Kirckpatrick, C.J., Mittermayer, C., and Höcker, H., in Biomaterial-Tissue Interfaces: Proc. 9th European Conf, on Biomaterials, edited by Doherty, P.J. (Elsevier, Amsterdam, 1992).Google Scholar
28. Anderheiden, D., Klee, D., Höcker, H., Heller, B., Kirckpatrick, C.J., Mittermayer, C., Mat. Sci.: Mater. Med. 3 (1992) p. 1.Google Scholar
29. Dekker, A., Anderheiden, D., Kaden, P., Ruchartz, D., Klee, D., Richter, H.A., Höcker, H., Mittermayer, C., and Kirckpatrick, C.J., “A novel surface modified polycarbonate urethane) as vascular graft material: compatibility with endothelial cells,” presented at the 4th World Biomaterials Congress, Berlin, April 24–28, 1992.Google Scholar
30. Klosterhalfen, B., Rixen, H., Mittermayer, C., Kirckpatrick, C.J., and Richter, H., in Biomedical Transport Processes, NATO ASI Series A: Life Sciences, edited by Mosora, F., Caro, C.G., Krause, E., Schmid-Schönbein, H., Baquey, C., and Pellisier, R. (Plenum Press, New York, 1990) p. 313.Google Scholar
31. Breuers, W., Klee, D., Höcker, H., and Mittermayer, C., J. Mater. Sci.: Mater. Med. 2 (1991) p. 106.Google Scholar
32. Klee, D., Schröder, K., Felger, H., Anderheiden, D., Kaden, P., Richter, H., Mittermayer, C., and Höcker, H., “Bioactive Surfaces of New Flexible Polyolefins for a Better Cell Adhesion,” presented at the 4th World Biomaterials Congress, Berlin, April 24–28, 1992.Google Scholar
33. Klee, D., Villari, R.V., Höcker, H., Dekker, B., and Mittermayer, C., J. Mater. Sei. 5 (1994) p. 592.Google Scholar
34. Bienert, H., Grau, M., Klee, D., Richter, H.A., and Mittermayer, C., “Quantification of CellBiomaterial Interaction by Confocal Laser Scanning Microscopy,” presented at the 11th European Conference on Biomaterials, Pisa, September 10–14, 1994, p. 205.Google Scholar
35. Kirckpatrick, C.J., Otterbach, T., Anderheiden, D., Schiefer, J., Richter, H., Höcker, H., Mittermayer, C., and Dekker, A.S., Cells Mater. 2 (1992) p. 169.Google Scholar
36. Dekker, A., Panfil, C., Valdor, M., Pennartz, G., Richter, H., Mittermayer, C., and Kirckpatrick, C.J., Cells Mater. 4 (1994) p. 101.Google Scholar
37. Nazzal, M., Owunwanne, A., and Christenson, J.T., Eur. J. Vase. Surg. 5 (1991) p. 169.CrossRefGoogle Scholar
38. Baumann, H. and Keller, R., Semin. Thromb. Hemost. 23 (1997) p. 215.Google Scholar
39. Kottke-Marchant, K., Veenstra, A.A., and Marchant, R.E., J. Biomed. Mater. Res. 30 (1996) p. 209.3.0.CO;2-H>CrossRefGoogle Scholar
40. Kikuchi, A., Taira, H., Tsuruta, T., Hayashi, M., Kataoka, K., J. Biomater. Sci. Polym. Ed. 8 (1996) p. 77.Google Scholar
41. Brunstedt, M.R., Ziats, N.P., Rose-Caprara, V., Hiltner, A., and Anderson, J.N., J. Biomed. Mater. Res. 27 (1993) p. 483.Google Scholar
42. Horng-Ban, L., Garcia-Echeverria, C., Asakura, S., Sun, W., Mosher, D.F., and Cooper, S.L., Biomaterials 13 (1992) p. 905.Google Scholar
43. Olivero, D.K. and Furcht, L.T., Invest. Ophthalmol. Vis. Sci. 34 (1993) p. 2825.Google Scholar
44. Kappelhof, P. and Vrensen, G.F., Acta. Ophthalmol. (Suppl.) 205 (1992) p. 13.CrossRefGoogle Scholar
45. Ridley, H., Trans. Ophthalmol. Soc. (U.K.) 84 (1964) p. 5.Google Scholar
46. Buchen, S.Y., Richards, S.C., Solomon, K.D., Apple, D.J., Knight, P.M., Christ, R., Pham, L.T., Nelson, D.L., Clayman, H.M., and Karpinski, L.G., J. Cataract. Refract. Surg. 15 (1989) p. 545.Google Scholar
47. Wenzel, M., Kamman, J., and Allmers, R., Klin. Monatsbl. Augenheilkd. 203 (1993) p. 408.Google Scholar
48. Hagelstein, M., Vaidor, M., Kaden, P., Richter, H.A., and Mittermayer, C., “ In Vitro Adhesion Model to Investigate the Adherence of Polymers to the Posterior Capsule Membrane -Prevention of the Posterior Capsule Opacification (After-Cataract),” presented at the 11th European Conference on Biomaterials, Pisa, Italy, September 10–14, 1994, p. 505.Google Scholar
49. Hettlich, H.J., Wenzel, M., Janssen, M., and Mittermayer, C., Fortsein. Ophthalmol. 87 (1990) p. 147.Google Scholar
50. Hettlich, H.J., Otterbach, F., Kaufmann, R., Klee, D., and Mittermayer, C., Biomaterials 12 (1991) p. 521.Google Scholar