Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T03:47:13.242Z Has data issue: false hasContentIssue false

Analysis of Complex Microstructures: Serial Sectioning and Phase-Field Simulations

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

With the emergence and evolution of serial sectioning techniques that allow for three-dimensional data collection and the continuing increase in computational power, it is now possible to analyze and compute the evolution of three-dimensional nano- and microstructures. Structures can be accurately characterized, and it is possible to correlate processing paths with materials properties with great precision. Examples of the analysis and computations of the evolution of three-dimensional microstructures are discussed. The focus is on experiments that use serial sectioning methods to determine three-dimensional structure and on phase-field simulations of microstructural evolution that employ experimental three-dimensional data as initial conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.DeHoff, R.T., J. Microsc. 131, 259 (1983).Google Scholar
2.Basanta, D., Miodownik, M.A., Holm, E.A., Bentley, P.J., Metall. Mater. Trans. A 36A, 1643 (2005).Google Scholar
3.Kenesei, P., Biermann, H., Borbély, A., Scripta Mater. 53, 787 (2005).CrossRefGoogle Scholar
4.Borbély, A., Kenesei, P., Biermann, H., Acta Mater. 54, 2735 (2006).Google Scholar
5.Bower, T.F., Brody, H.D., Flemings, M.C., Trans. AIME 236, 624 (1966).Google Scholar
6.Mangan, M.A., Lauren, P.D., Shiflet, G.J., J. Met. 188, 36 (1997).Google Scholar
7.Li, M., Ghosh, S., Richmond, O., Weiland, H., Rouns, T.N., Mater. Sci. Eng. A265, 153 (1999).Google Scholar
8.Li, M., Ghosh, S., Richmond, O., Weiland, H., Rouns, T.N., Mater. Sci. Eng. A266, 221 (1999).Google Scholar
9.DeHoff, R.T., Aigeltinger, E.H., Craig, K.R., J. Microsc. 95, 69 (1972).Google Scholar
10.Alkemper, J., Voorhees, P.W., J. Microsc. 201, 388 (2001).CrossRefGoogle Scholar
11.Spowart, J.E., Mullens, H.M., Puchala, B.T., J. Met. 55, 35 (2003).Google Scholar
12.Lewis, A.C., Bingert, J.F., Rowenhorst, D.J., Gupta, A., Geltmacher, A.B., Spanos, G., Mater. Sci. Eng. 418, 11 (2006).Google Scholar
13.Rowenhorst, D.J., Gupta, A., Feng, C.R., Spanos, G., Scripta Mater. 55, 11 (2006).Google Scholar
14.Uchic, M.D., Groeber, M.A., Dimiduk, D.M., Simmons, J.P., Scripta Mater. 55, 23 (2006).Google Scholar
15.Groeber, M., Ghosh, S., Uchic, M.D., Dimiduk, D.M., J. Met. 59, 32 (2007).Google Scholar
16.Wilson, J.R., Kobsiriphat, W., Mendoza, R., Chen, Hsun-Yi, Miller, J.M., Miller, D.J., Thornton, K., Voorhees, P.W., Adler, S.B., Barnett, S.A., Nat. Mater. 5, 541 (2006).Google Scholar
17.Holzer, L., Indutnyi, F., Gasser, P.H., Muench, B., Wegmann, M., J. Microsc. 216, 84 (2004).CrossRefGoogle Scholar
18.Holzer, L., Muench, B., Wegmann, M., Gasser, P., Flatt, R.J., J. Am. Ceram. Soc. 89, 2577 (2006).Google Scholar
19.Bernard, D., Nielsen, O., Salvo, L., Cloetens, P., Mater. Sci. Eng. A 392, 112 (2005).CrossRefGoogle Scholar
20.Ludwig, O., Dimichiel, M., Salvo, L., Suéry, M., Falus, P., Metall. Mater. Trans. A 36A, 1515 (2005).Google Scholar
21.Limodin, N., Salvo, L., Suéry, M., Dimichiel, M., Acta Mater. 55, 3177 (2007).Google Scholar
22.Isheim, D., Prakash Kolli, R., Fine, M.E., Seidman, D.N., Scripta Mater. 55, 35 (2006).Google Scholar
23.Lauridsen, E.M., Schmidt, S., Nielsen, S.F., Margulies, L., Poulsen, H.F., Juul Jensen, D., Scripta Mater. 55, 51 (2006).Google Scholar
24.Maire, E., Colombo, P., Adrien, J., Babout, L., Biasetto, L., J. Eur. Ceram. Soc. 27, 1973 (2007).Google Scholar
25.Singer, H.M., Bilgram, J.H., Europhys. Lett. 68, 240 (2004).CrossRefGoogle Scholar
26.Lorensen, W.E., Cline, H.E., Comput. Graphics 21, 163 (1987).Google Scholar
27.Gameiro, M., Mischaikow, K., Wanner, T., Acta Mater. 53, 693 (2005).Google Scholar
28.Kammer, D., PhD Thesis, Northwestern University, Evanston, IL, June 2006.Google Scholar
29.Alkemper, J., Voorhees, P.W., Acta Mater. 49, 897 (2001).Google Scholar
30.Alkemper, J., Mendoza, R., Voorhees, P.W., Adv. Eng. Mater. 4, 694 (2002).Google Scholar
31.Mendoza, R., Alkemper, J., Voorhees, P.W., Metall. Mater. Trans. A 34A, 481 (2003).Google Scholar
32.Mendoza, R., Alkemper, J., Voorhees, P.W., Z. Metallkd. 96, 155 (2005).Google Scholar
33.Kammer, D., Voorhees, P.W., Acta Mater. 54, 1549 (2006).Google Scholar
34.Mendoza, R., Thornton, K., Savin, I., Voorhees, P.W., Acta Mater. 54, 743 (2006).Google Scholar
35.Kammer, D., Mendoza, R., Voorhees, P.W., Scripta Mater. 55, 17 (2006).Google Scholar
36.Wolfsdorf, T.L., Bender, W.H., Voorhees, P.W., Acta Mater. 45, 2279 (1997).Google Scholar
37.Rowenhorst, D.J., Kuang, J.P., Thornton, K., Voorhees, P.W., Acta Mater. 54, 2027 (2006).Google Scholar
38.Jinnai, H., Koga, T., Nishikawa, Y., Hashimoto, T., Hyde, S., Phys. Rev. Lett. 78, 2248 (1997).Google Scholar
39.Nishikawa, Y., Jinnai, H., Koga, T., Hasimoto, T., Hyde, S., Langmuir 14, 1242 (1998).Google Scholar
40.Nishikawa, Y., Koga, T., Hashimoto, T., Jinnai, H., Langmuir 17, 3254 (2001).Google Scholar
41.Spowart, J.E., Scripta Mater. 55, 5 (2006).Google Scholar
42.Maruyama, B., Spowart, J.E., Hooper, D.J., Mullens, H.M., Druma, A.M., Druma, C., Khairul Alam, M., Scripta Mater. 54 (2006).Google Scholar
43.Spowart, J.E., J. Met. 58, 29 (2006).Google Scholar
44.Gibbs, J.W., The Collected Works of J. Williard Gibbs (Oxford University Press, Oxford, UK, 1948).Google Scholar
45.van der Waals, J.D., Z. Phys. Chem. 13, 657 (1894).Google Scholar
46.Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A., Annu. Rev. Mater. Res. 32, 163 (2002).Google Scholar
47.Ode, M., Kim, S.G., Suzuki, T., ISIJ Int. 41, 1076 (2001).Google Scholar
48.Chen, L.Q., Annu. Rev. Mater. Res. 32, 113 (2002).Google Scholar
49.Caginalp, G., Xie, W., Phys. Rev. E 48, 1897 (1993).Google Scholar
50.Wheeler, A.A., Boettinger, W.J., McFadden, G.B., Phys. Rev. A 45, 7424 (1992).Google Scholar
51.Karma, A., Rappel, W.J., Phys. Rev. E 53, 3017 (1996).Google Scholar
52.Bates, P.W., Fife, P.C., Gardner, R.A., Jones, C.K.R.T., Phys. D 104, 1 (1997).Google Scholar
53.Provatas, N., Goldenfeld, N., Dantzig, J., J. Comp. Phys. 148, 265 (1999).Google Scholar
54.Provatas, N., Goldenfeld, N., Dantzig, J., Phys. Rev. Lett. 80, 3308 (1998).Google Scholar
55.Gruber, J., Ma, N., Wang, Y., Rollett, A.D., Rohrer, G.S., Modell. Simul. Mater. Sci. Eng. 14, 1189 (2006).Google Scholar
56.Mendoza, R., Savin, I., Thornton, K., Voorhees, P.W., Nat. Mater. 3, 385 (2004).Google Scholar