Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T04:26:49.530Z Has data issue: false hasContentIssue false

Aggregation-induced emission: Materials and biomedical applications

Published online by Cambridge University Press:  09 June 2017

Bin Liu*
Affiliation:
Chemical and Biomolecular Engineering Department, National University of Singapore, Singapore; cheliub@nus.edu.sg
Get access

Abstract

It is common knowledge that chromophore aggregation usually quenches light emission. The concept of aggregation-induced emission (AIE) changes this general belief and provides a new stage for the exploration of practical luminescent materials. The weak emission of AIE fluorogens (AIEgens) as molecular species and their bright fluorescence as nanoscopic aggregates distinguishes them from conventional organic luminophores and inorganic nanoparticles, making them ideal candidates for high-tech applications. This article summarizes the impact of AIEgens in biomedical applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hong, Y., Lam, J.W.Y., Tang, B.Z., Chem. Soc. Rev. 40, 5361 (2011).Google Scholar
Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., Chen, H., Qiu, C., Kwok, H.S., Zhan, X., Liu, Y., Zhu, D., Tang, B.Z., Chem. Commun. 18, 1740 (2001).Google Scholar
Feng, G., Liu, B., Small 12, 6528 (2016).Google Scholar
Mei, J., Hong, Y., Lam, J.W.Y., Qin, A., Tang, Y., Tang, B.Z., Adv. Mater. 26, 5429 (2014).Google Scholar
Qian, H., Cousins, M.E., Horak, E.H., Wakefield, A., Liptak, M.D., Aprahamian, I., Nat. Chem. 9, 83 (2017).CrossRefGoogle Scholar
Mei, J., Leung, N.L.C., Kwok, R.T.K., Lam, J.W.Y., Tang, B.Z., Chem. Rev. 115, 11718 (2015).Google Scholar
Ding, D., Li, K., Liu, B., Tang, B.Z., Acc. Chem. Res. 46, 2441 (2013).CrossRefGoogle Scholar
Liang, J., Tang, B.Z., Liu, B., Chem. Soc. Rev. 44, 2798 (2015).Google Scholar
Shi, H., Liu, J., Geng, J., Tang, B.Z., Liu, B., J. Am. Chem. Soc. 134, 9569 (2012).CrossRefGoogle Scholar
Shi, H., Kwok, R.T.K., Liu, J., Xing, B., Tang, B.Z., Liu, B., J. Am. Chem. Soc. 134, 17972 (2012).Google Scholar
Yuan, Y., Liu, B., Chem. Sci. 8, 2537 (2017), doi:10.1039/C6SC05421H.CrossRefGoogle Scholar
Yuan, Y., Kwok, R.T.K., Zhang, R., Tang, B.Z., Liu, B., Chem. Commun. 50, 11465 (2014).Google Scholar
Yuan, Y., Kwok, R.T.K., Tang, B.Z., Liu, B., J. Am. Chem. Soc. 136, 2546 (2014).Google Scholar
Yuan, Y., Kwok, R.T.K., Tang, B.Z., Liu, B., Small 11, 4682 (2015).Google Scholar
Xu, S., Yuan, Y., Cai, X., Zhang, C.J., Hu, F., Liang, J., Zhang, G., Zhang, D., Liu, B., Chem. Sci. 6, 5824 (2015).CrossRefGoogle Scholar
Yuan, Y., Zhang, C.J., Gao, M., Zhang, R.Y., Tang, B.Z., Liu, B., Angew. Chem. Int. Ed. 54, 1780 (2015).CrossRefGoogle Scholar
Feng, G.X., Yuan, Y., Hu, F., Zhang, R.Y., Xing, B., Zhang, G., Zhang, D., Liu, B., Chem. Commun, 51, 12490 (2015).CrossRefGoogle Scholar
Yuan, Y., Zhang, C.J., Liu, B., Angew. Chem. Int. Ed. 54, 11419 (2015).Google Scholar
Li, K., Qin, W., Ding, D., Tomczak, N., Geng, J., Liu, R., Liu, J., Zhang, X., Liu, H., Liu, B., Tang, B.Z., Sci. Rep. 3, 1150 (2013).Google Scholar
Ding, D., Mao, D., Li, K., Wang, X., Qin, W., Liu, R., Chiam, D.S., Tomczak, N., Yang, Z., Tang, B.Z., Kong, D., Liu, B., ACS Nano 8, 12620 (2014).CrossRefGoogle Scholar
Lou, X., Zhao, Z., Tang, B.Z., Small 12, 6429 (2016).Google Scholar
Liu, J., Chen, C., Ji, S., Liu, Q., Ding, D., Zhao, D., Liu, B., Chem. Sci. 8, 2782 (2017).CrossRefGoogle Scholar