Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-03T07:38:50.309Z Has data issue: false hasContentIssue false

Additive manufacturing and processing of architected materials

Published online by Cambridge University Press:  10 October 2019

Christopher M. Spadaccini*
Affiliation:
Lawrence Livermore National Laboratory, USA; spadaccini2@llnl.gov
Get access

Abstract

Architected materials are a unique and emerging class of materials where performance is fundamentally controlled by geometry at multiple length scales, from the nano- to the macroscale, rather than chemical composition alone. As a result, the realization of these remarkable materials is contingent upon the ability to faithfully reproduce the designed architecture. This presents fundamental challenges in fabrication due to the required three-dimensional complexity, multiple length scales, range of material constituents, possibility of multiple materials in a single architecture, and overall manufacturing throughput. Additive manufacturing (AM) processes can provide solutions to some of these challenges and are discussed in this article. Specifically, light-based and extrusion-based processes and associated materials are presented with an emphasis on recent developments, including volumetric additive manufacturing, and on-the-fly mixing of materials in extrusion-based printing systems. While remarkable advancements have been made in AM for architected materials, bringing these materials and processes to industrial realization remains a significant challenge.

Type
Three-Dimensional Architected Materials and Structures
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pavlosky, J.E., St. Leger, L.G., Apollo Experience Report—Thermal Protection Subsystem, (NASA Technical Note TN D-7564, NASA, Washington, DC, (1974).Google Scholar
Meza, L.R., Das, S., Greer, J.R., Science 345, 1322 (2014).CrossRefGoogle Scholar
Meza, L.R., Zelhofer, A.J., Clarke, N., Mateos, A.J., Kochmann, D.M., Greer, J.R., Proc. Natl. Acad. Sci. U.S.A. 112, 11502 (2015).CrossRefGoogle Scholar
Bauer, J., Schroer, A., Schwaiger, R., Kraft, O., Nat. Mater. 15, 438 (2016).CrossRefGoogle Scholar
Zheng, X., Smith, W., Jackson, J.A., Moran, B., Cui, H., Chen, D., Ye, J., Fang, N.X., Rodriguez, N., Weisgraber, T., Spadaccini, C.M., Nat. Mater. 15, 1100 (2016).CrossRefGoogle Scholar
Hopkins, J.B., Lange, K.J., Spadaccini, C.M., J. Mech. Des. 135, 061004 (2013).CrossRefGoogle Scholar
Wang, Q., Jackson, J.A., Ge, Q., Hopkins, J.B., Spadaccini, C.M., Fang, N.X., Phys. Rev. Lett. 117, 175901 (2016).CrossRefGoogle ScholarPubMed
Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., Ritchie, R.O., Science 322, 1516 (2008).CrossRefGoogle Scholar
Weaver, J.C., Milliron, G.W., Miserez, A., Evans-Lutterodt, K., Herrera, S., Gallana, I., Mershon, W.J., Swanson, B., Zavattieri, P., DiMasi, E., Kisailus, D., Science 336, 1275 (2012).CrossRefGoogle Scholar
Yao, B., Chandrasekaran, S., Zhang, J., Xiao, W., Qian, F., Zhu, C., Duoss, E.B., Spadaccini, C.M., Worsley, M.A., Li, Y., Joule 3, 459 (2018).CrossRefGoogle Scholar
Xia, X., Afshar, A., Yang, H., Portela, C.M., Kochmann, D.M., Di Leo, C.V., Greer, J.R., Nature 572, (2019).Google Scholar
Coulais, C., Teomy, E., De Reus, K., Shokef, Y., Van Hecke, M., Nature 535, 529 (2016).CrossRefGoogle Scholar
Bertoldi, K., Vitelli, V., Christensen, J., van Hecke, M., Nat. Rev. Mater. 2, 17066 (2017).CrossRefGoogle Scholar
Jackson, J.A., Messner, M.C., Dudukovic, N.A., Smith, W.L., Bekker, L., Moran, B., Golobic, A.M., Pascall, A.J., Duoss, E.B., Loh, K.J., Spadaccini, C.M., Sci. Adv. 4, eaau6419 (2018).CrossRefGoogle Scholar
Hull, C., “Apparatus for Production of Three-Dimensional Objects by Stereolithography,” US Patent 4,575,330 (1986).Google Scholar
Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L., Carter, W.B., Science 334, 962 (2011).CrossRefGoogle Scholar
Zheng, X., DeOtte, J., Alonso, M., Farquar, G., Weisgraber, T., Gemberling, S., Lee, H., Fang, N., Spadaccini, C.M., Rev. Sci. Instrum. 83, 125001 (2012).CrossRefGoogle Scholar
Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E., Kuntz, J., Biener, M.M., Ge, Q., Jackson, J., Kucheyev, S.O., Fang, N.X., Spadaccini, C.M., Science 344, 1373 (2014).CrossRefGoogle Scholar
Maruo, S., Nakamura, O., Kawata, S., Opt. Lett. 22, 132 (1997).CrossRefGoogle Scholar
Malinauskas, M., Žukauskas, A., Bičkauskaitė, G., Gadonas, R., Juodkazis, S., Opt. Express 18, 10209 (2010).CrossRefGoogle Scholar
Shusteff, M., Browar, A.E.M., Kelly, B.E., Henriksson, J., Weisgraber, T.H., Panas, R.M., Fang, N.X., Spadaccini, C.M., Sci. Adv. 3, eaao5496 (2017).CrossRefGoogle Scholar
Kelly, B.E., Bhattacharya, I., Heidari, H., Shusteff, M., Spadaccini, C.M., Taylor, H.K., Science 363, 1075 (2019).CrossRefGoogle Scholar
Hensleigh, R.M., Cui, H., Oakdale, J.S., Ye, J.C., Campbell, P.G., Duoss, E.B., Spadaccini, C.M., Zheng, X., Worsley, M.A., Mater. Horiz. 5, 1035 (2018).CrossRefGoogle Scholar
Eckel, Z.C., Zhou, C., Martin, J.H., Jacobsen, A.J., Carter, W.B., Schaedler, T.A., Science 351, 58 (2016).CrossRefGoogle Scholar
Vyatskikh, A., Delalande, S., Kudo, A., Zhang, X., Portela, C.M., Greer, J.R., Nat. Commun. 9, 593 (2018).CrossRefGoogle Scholar
Lewis, J.A., J. Am. Ceram. Soc. 83, 2341 (2000).CrossRefGoogle Scholar
Lewis, J.A., Adv. Funct. Mater. 16, 2193 (2006).CrossRefGoogle Scholar
Ahn, B.Y., Duoss, E.B., Motala, M.J., Guo, X., Park, S.-I., Xiong, Y., Yoon, J., Nuzzo, R.G., Rogers, J.A., Lewis, J.A., Science 323, 1590 (2009).CrossRefGoogle Scholar
Duoss, E.B., Twardowski, M., Lewis, J.A., Adv. Mater. 19, 3485 (2007).CrossRefGoogle Scholar
Zhu, C., Qi, Z., Beck, V.A., Luneau, M., Lattimer, J., Chen, W., Worsley, M.A., Ye, J., Duoss, E.B., Spadaccini, C.M., Friend, C.M., Biener, J., Sci. Adv. 4, eaas9459 (2018).CrossRefGoogle Scholar
Zhu, C., Han, T.Y., Duoss, E.B., Golobic, A.M., Kuntz, J.D., Spadaccini, C.M., Worsley, M.A., Nat. Commun. 6, 6962 (2015).CrossRefGoogle Scholar
Ober, T.J., Foresti, D., Lewis, J.A., Proc. Natl. Acad. Sci. U.S.A. 112, 12293 (2015).CrossRefGoogle Scholar
Nguyen, D.T., Meyers, C., Yee, T.D., Dudukovic, N.A., Destino, J.F., Zhu, C., Duoss, E.B., Baumann, T.F., Suratwala, T., Smay, J.E., Dylla-Spears, R., Adv. Mater. 29, 1701181 (2017).CrossRefGoogle Scholar
Ortega, J.M., Golobic, M., Sain, J.D., Lenhardt, J.M., Wu, A.S., Fisher, S.E., Perez, L.X., Jaycox, A.W., Smay, J.E., Duoss, E.B., Wilson, T.S., Adv. Mater. Technol. 4, 1800717 (2019).CrossRefGoogle Scholar
Golobic, A.M., Durban, M.D., Fisher, S.E., Grapes, M.D., Ortega, J.M., Spadaccini, C.M., Duoss, E.B., Gash, A.E., Sullivan, K.T., Adv. Eng. Mater. 21, 1900147 (2019).CrossRefGoogle Scholar
Hansen, C.J., Saksena, R., Kolesky, D.B., Vericella, J.J., Kranz, S.J., Muldowney, G.P., Christensen, K.T., Lewis, J.A., Adv. Mater. 25, 96 (2013).CrossRefGoogle Scholar