Hostname: page-component-7d684dbfc8-csfzr Total loading time: 0 Render date: 2023-09-24T05:06:05.366Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Ultrafast laser-induced morphological transformations

Published online by Cambridge University Press:  06 December 2016

Michael J. Abere
Affiliation:
Sandia National Laboratories, USA; mjabere@sandia.gov and mjkabere@gmail.com
Minlin Zhong
Affiliation:
Laser Materials Processing Research Centre, School of Material Science & Engineering, Tsinghua University, China; zhml@tsinghua.edu.cn
Jörg Krüger
Affiliation:
6.4 Nanomaterial Technologies Division, Bundesanstalt für Materialforschung und –prüfung (BAM), Germany; joerg.krueger@bam.de
Jörn Bonse
Affiliation:
6.4 Nanomaterial Technologies Division, Bundesanstalt für Materialforschung und –prüfung (BAM), Germany; joern.bonse@bam.de
Get access

Abstract

Ultrafast laser processing can be used to realize various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization via the generation of “self-ordered” micro- and nanostructures as well as their hierarchical hybrids. Irradiation with high-intensity laser pulses excites materials into extreme conditions, which then return to equilibrium through these unique surface transformations. In combination with suitable top-down or bottom-up manufacturing strategies, such laser-tailored surface morphologies open up new avenues toward the control of optical, chemical, and mechanical surface properties, featuring various technical applications especially in the fields of photovoltaics, tribology, and medicine. This article reviews recent efforts in the fundamental understanding of the formation of laser-induced surface micro- and nanostructures and discusses some of their emerging capabilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Küper, S., Stuke, M., Appl. Phys. B 44, 199 (1987).CrossRef
Srinivasan, R., Sutcliffe, E., Braren, B., Appl. Phys. Lett. 51, 1285 (1987).CrossRef
Bonse, J., Krüger, J., J. Appl. Phys. 107, 054902 (2010).CrossRef
Bäuerle, D., Laser Processing and Chemistry, 4th ed. (Springer-Verlag, Berlin, 2011).CrossRefGoogle Scholar
Glezer, E.N., Siegal, Y., Huang, L., Mazur, E., Phys. Rev. B Condens. Matter 51, 6959 (1995).CrossRef
Shank, C.V., Yen, R., Hirlimann, C., Phys. Rev. Lett. 50, 454 (1983).CrossRef
Rousse, A., Rischel, C., Formaux, S., Uschmann, I., Sebban, S., Grillon, G., Balcou, P., Förster, E., Geindre, J.P., Audebert, P., Gauthier, J.C., Hulin, D., Nature 410, 65 (2001).CrossRef
Zier, T., Zijlstra, E.S., Kalitsov, A., Theodonis, I., Garcia, M.E., Struct. Dyn. 2, 054101 (2015).CrossRef
Stoian, R., Rosenfeld, A., Ashkenasi, D., Hertel, I.V., Bulgakova, N.M., Campbell, E.E.B., Phys. Rev. Lett. 88, 097603 (2002).CrossRef
Bonse, J., Rosenfeld, A., Krüger, J., J. Appl. Phys. 106, 104910 (2009).CrossRef
Huang, M., Zhao, F., Cheng, Y., Xu, N., Xu, Z., ACS Nano 3, 4062 (2009).CrossRef
Murphy, R.D., Torralva, B., Adams, D.P., Yalisove, S.M., Appl. Phys. Lett. 104, 231117 (2014).CrossRef
Bulgakova, N.M., Bulgakov, A.V., Appl. Phys. A 73, 199 (2001).CrossRef
Bonse, J., Bachelier, G., Siegel, J., Solis, J., Sturm, H., J. Appl. Phys. 103, 054910 (2008).CrossRef
Tsibidis, G.D., Barberoglu, M., Loukakos, P.A., Stratakis, E., Fotakis, C., Phys. Rev. B Condens. Matter 86, 115316 (2012).CrossRef
van Driel, H.M., Sipe, J.E., Young, J.F., Phys. Rev. Lett. 49, 1955 (1982).CrossRef
Reif, J., Costache, F., Henyk, M., Pandelov, S.V., Appl. Surf. Sci. 197, 891 (2002).CrossRef
Her, T.-H., Finlay, R., Wu, C., Mazur, E., Appl. Phys. A 70, 383 (2000).CrossRef
Tull, B.R., Carey, J.E., Mazur, E., McDonald, J.P., Yalisove, S.M., MRS Bull. 31, 626 (2006).CrossRef
Sugioka, K., Cheng, Y., Eds., Ultrafast Laser Processing—From Micro- to Nanoscale (Taylor & Francis, Boca Raton, FL, 2013).Google Scholar
Joglekar, A.P., Liu, H., Meyhöfer, E., Mourou, G., Hunt, A.J., Proc. Natl. Acad. Sci. U.S.A. 101, 5856 (2004).CrossRef
Ringleb, F., Eylers, K., Teubner, T., Boeck, T., Symietz, S., Bonse, J., Andree, S., Krüger, J., Heidmann, B., Schmid, M., Lux-Steiner, M., Appl. Phys. Lett. 108, 111904 (2016).CrossRef
Birnbaum, M., J. Appl. Phys. 36, 3688 (1965).CrossRef
Borowiec, A., Haugen, H.K., Appl. Phys. Lett. 82, 4462 (2003).CrossRef
Vorobyev, A.V., Guo, C., Laser Photon. Rev. 7, 385 (2013).CrossRef
Bonse, J., Krüger, J., Höhm, S., Rosenfeld, A., J. Laser Appl. 24, 042006 (2012).CrossRef
Bonch-Bruevich, A.M., Libenson, M.N., Makin, V.S., Trubaev, V.A., Opt. Eng. 31, 718 (1992).CrossRef
Sipe, J.E., Young, J.F., Preston, J.S., van Driel, H.M., Phys. Rev. B Condens. Matter 27, 1141 (1983).CrossRef
Abere, M.J., Torralva, B., Yalisove, S.M., Appl. Phys. Lett. 108, 153110 (2016).CrossRef
Lindenberg, A.M., Larsson, J., Sokolowski-Tinten, K., Gaffnery, K.J., Blome, C., Synnergren, O., Sheppard, J., Caleman, C., MacPhee, A.G., Weinstein, D., Lowney, D.P., Allison, T.K., Matthews, T., Falcone, R.W., Cavalieri, A.L., Fritz, D.M., Lee, S.H., Bucksbaum, P.H., Reis, D.A., Rudati, J., Fuoss, P.H., Kao, C.C., Siddons, D.P., Pahl, R., Als-Nielsen, J., Duesterer, S., Ischebeck, R., Schlarb, H., Schulte-Schrepping, H., Tschentscher, T., Schneider, J., von der Linde, D., Hignette, O., Sette, F., Chapman, H.N., Lee, R.W., Hansen, T.N., Techert, S., Wark, J.S., Bergh, M., Huldt, G., van der Spoel, D., Timneanu, N., Hajdu, J., Akre, R.A., Bong, E., Krejcik, P., Arthur, J., Brennan, S., Luening, K., Hastings, J.B., Science 308, 392 (2005).CrossRef
Fritz, D.M., Reis, D.A., Adams, B., Akre, R.A., Arthur, J., Blome, C., Bucksbaum, P.H., Cavalieri, A.L., Engemann, S., Fahy, S., Falcone, R.W., Fuoss, P.H., Gaffney, K.J., George, M.J., Hajdu, J., Hertlein, M.P., Hillyard, P.B., Horn-von Hoegen, M., Kammler, M., Kaspar, J., Kienberger, R., Krejcik, P., Lee, S.H., Lindenberg, A.M., McFarland, B., Meyer, D., Montagne, T., Murray, É.D., Nelson, A.J., Nicoul, M., Pahl, R., Rudati, J., Schlarb, H., Siddons, D.P., Sokolowski-Tinten, K., Tschentscher, T., von der Linde, D., Hastings, J.B., Science 315, 633 (2007).Google Scholar
Graves, J.S., Allen, R.E., Phys. Rev. B Condens. Matter 58, 13627 (1998).CrossRef
Glezer, E.N., Siegal, Y., Huang, L., Mazur, E., Phys. Rev. B Condens. Matter 51, 9589 (1995).CrossRef
Sundaram, S.K., Mazur, E., Nat. Mater. 1, 217 (2002).CrossRef
Barnes, W.L., Preist, T.W., Kitson, S.C., Sambles, J.R., Phys. Rev. B Condens. Matter 54, 6227 (1996).CrossRef
Yang, W.H., Srolovitz, D.J., Phys. Rev. Lett. 71, 1593 (1993).CrossRef
Bonse, J., Koter, R., Hartelt, M., Spaltmann, D., Pentzien, S., Höhm, S., Rosenfeld, A., Krüger, J., Appl. Phys. A 117, 103 (2014).CrossRef
Fan, P., Zhong, M., Li, L., Huang, T., Zhang, H., Opt. Express 21, 11628 (2013).CrossRef
Fan, P., Zhong, M., Bai, B., Jin, G., Zhang, H., Appl. Surf. Sci. 359, 7 (2015).CrossRef
Fan, P., Bai, B., Long, J., Jiang, D., Jin, G., Zhang, H., Zhong, M., Nano Lett. 15, 5988 (2015).CrossRef
Fan, P., Zhong, M., Bai, B., Jin, G., Zhang, H., RSC Adv. 6, 45923 (2016).CrossRef