Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mm7gn Total loading time: 0.294 Render date: 2022-08-10T12:29:30.204Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Synthesis, Analysis, and Electrical Property Measurements of Compound Nanotubes in the B-C-N Ceramic System

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanotubular structures in the B-C-N ceramic system represent an intriguing alternative to conventional carbon nanotubes.Because of the ability to widely vary the chemical composition of nanotubes within the B-C-N ternary phase diagram and to change the stacking of C-rich or BN-rich tubular shells in multiwalled structures, a wide horizon opens up for tuning nanostructure electrical properties.Pure carbon nanotubes are metals or narrow-bandgap semiconductors, depending on the helicity and diameter, whereas those of BN are insulators with a ∼5.0eV gap independent of these parameters.Thus, the relative B/C/N ratios and/or BN-rich and C-rich domain spatial arrangements, rather than tube helicity and diameter, are assumed to primarily determine the B-C-N nanotube electrical response.This characteristic is highly valuable for nanotechnology:while tube diameter and helicity are currently difficult to control, continuous doping of C with BN, or vice versa, proceeds relatively easily due to the isostructural nature of layered C and BN materials.In this article, recent progress in the synthesis, microscopic analysis, and electrical property measurements of a variety of compound nanotubes in the ceramic B-C-N system is documented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Iijima, S., Nature 354 (1991) p. 56.CrossRefGoogle Scholar
2Blase, X., Rubio, A., Louie, S.G., Cohen, M.L., and Zettl, A., Europhys. Lett. 28 (1994) p. 3085.CrossRefGoogle Scholar
3Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A., Science 269 (1995) p. 966.CrossRefGoogle Scholar
4Golberg, D., Bando, Y., Kurashima, K., and Sato, T., Scripta Mater. 44 (2001) p. 1561.CrossRefGoogle Scholar
5Wildöer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., and Dekker, C., Nature 391 (1998) p. 59.CrossRefGoogle Scholar
6Stéphan, O., Ajayan, P.M., Colliex, C., Redlich, P., Lambert, J.M., Bernier, P., and Lefin, P., Science 266 (1994) p. 576.CrossRefGoogle Scholar
7Miyamoto, Y., Rubio, A., Cohen, M.L., and Louie, S., Phys. Rev. B 50 (1994) p. 4976.CrossRefGoogle Scholar
8Kawaguchi, M., Adv. Mater. 9 (1997) p. 615.CrossRefGoogle Scholar
9Baughman, R., Zakhidov, A.A., and Heer, W.A. de, Science 297 (2002) p. 788.CrossRefGoogle Scholar
10Zhang, Y., Suenaga, K., Colliex, C., and Iijima, S., Science 281 (1998) p. 973.CrossRefGoogle Scholar
11Lourie, O., Jones, C.R., Bartlett, B.M., Gibbons, P.C., Ruoff, R.S., and Buhro, W.E., Chem. Mater. 12 (2000) p. 1808.CrossRefGoogle Scholar
12Cumings, J. and Zettl, A., Chem. Phys. Lett. 316 (2000) p. 211.CrossRefGoogle Scholar
13Lee, R.S., Gavilett, J., Chapelle, M. de la, Loiseau, A., Cochon, J.L., Pigache, D., Thibault, J., and Willaime, F., Phys. Rev. B 64 121405 (2001).CrossRefGoogle Scholar
14Terrones, M., Grobert, N., and Terrones, H., Carbon 40 (2002) p. 1665.CrossRefGoogle Scholar
15Han, W.Q., Bando, Y., Kurashima, K., and Sato, T., Appl. Phys. Lett. 73 (1998) p. 3085.CrossRefGoogle Scholar
16Golberg, D., Bando, Y., Bourgeois, L., Kurashima, K., and Sato, T., Carbon 38 (2000) p. 2017.CrossRefGoogle Scholar
17Golberg, D., Bando, Y., Bourgeois, L., Kurashima, K., and Sato, T., Appl. Phys. Lett. 77 (2000) p. 1979.CrossRefGoogle Scholar
18Golberg, D., Bando, Y., Kurashima, K., and Sato, T., Diamond Relat. Mater. 10 (2001) p. 63.CrossRefGoogle Scholar
19Golberg, D., Dorozhkin, P.S., Bando, Y., Hasegawa, M., and Dong, Z.-C., Chem. Phys. Lett. 359 (2002) p. 220.CrossRefGoogle Scholar
20Dorozhkin, P.S., Golberg, D., Bando, Y., and Dong, Z.-C., Appl. Phys. Lett. 81 (2002) p. 1083.CrossRefGoogle Scholar
21Golberg, D., Dorozhkin, P.S., Bando, Y., Dong, Z.-C., Grobert, N., Reyes-Reyes, M., Terrones, H., and Terrones, M., Appl. Phys. Lett. 82 (2003) p. 1275.CrossRefGoogle Scholar
22Golberg, D., Dorozhkin, P.S., Bando, Y., Dong, Z.-C., Tang, C.C., Uemura, Y., Grobert, N., Reyes-Reyes, M., Terrones, H., and Terrones, M., Appl. Phys. A 76 (2003) p. 499.CrossRefGoogle Scholar
23Morioshi, Y., Shimizu, Y., and Watanabe, T., Thin Solid Films 390 (2001) p. 26.CrossRefGoogle Scholar
24Chen, Y., Chadderton, L.T., Gerald, J.F., and Williams, J.S., Appl. Phys. Lett. 74 (1999) p. 2960.CrossRefGoogle Scholar
25Bengu, E. and Marks, L.D., Phys. Rev. Lett. 86 (2001) p. 2385.CrossRefGoogle Scholar
26Han, W.Q. and Zettl, A., Appl. Phys. Lett. 81 (2002) p. 5051.CrossRefGoogle Scholar
27Bando, Y., Ogawa, K., and Golberg, D., Chem. Phys. Lett. 347 (2001) p. 349.CrossRefGoogle Scholar
28Golberg, D., Bando, Y., Kurashima, K., and Sato, T., J. Nanosci. Nanotechnol. 1 (2001) p. 49.CrossRefGoogle Scholar
29Mickelson, W., Aloni, S., Han, W.Q., Cumings, J., and Zettl, A., Science 300 (2003) p. 467.CrossRefGoogle Scholar
30Yu, J., Ahn, J., Yoon, S.F., Zhang, Q., , Rusli, Gan, B., Chew, K., Yu, M.B., Bai, X.D., and Wang, E.G., Appl. Phys. Lett. 77 (2000) p. 1949.CrossRefGoogle Scholar
31Redlich, Ph., Loeffler, J., Ajayan, P.M., Bill, J., Aldinger, F., and Rühle, M., Chem. Phys. Lett. 260 (1996) p. 465.CrossRefGoogle Scholar
32Blase, X., Charlier, J.-C., Vita, A. De, and Car, R., Appl. Phys. A 68 (1999) p. 293.CrossRefGoogle Scholar
33Saito, Y., Maida, M., and Matsumoto, T., Jpn. J. Appl. Phys. Part 1 38 (1999) p. 159.CrossRefGoogle Scholar
34Carroll, D.L., Redlich, P., Blase, X., Charlier, J.-C., Curran, S., Ajayan, P.M., Roth, S., and Rühle, M., Phys. Rev. Lett. 81 (1998) p. 2332.CrossRefGoogle Scholar
35Wei, B., Spolenak, R., Kohler-Redlich, P., Rühle, M., and Artz, E., Appl. Phys. Lett. 74 (1999) p. 3149.CrossRefGoogle Scholar
36Cumings, J. and Zettl, A., in Proc. 16th Int. Workshop on Electronic Properties of Molecular Nanostructures, edited by Kuzmani, H., Fink, J., Mehring, M., and Roth, S., AIP Conf. Proc. Ser. Vol. 633 (American Institute of Physics, New York, 2001) p. 577.Google Scholar
37Bonard, J.-M., Kind, H., Stockli, T., and Nilsson, L.-O., Solid-State Electron. 45 (2001) p. 893.CrossRefGoogle Scholar
38Gomer, R., Field Emission and Field Ionization, Chapters 1 and 2 (Harvard University Press, Cambridge, 1961).Google Scholar
39Cumings, J., Collins, P.G., and Zettl, A., Nature 406 (2000) p. 586.CrossRefGoogle Scholar
40Collins, P.G., Arnold, M.S., and Avouris, Ph., Science 292 (2001) p. 706.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis, Analysis, and Electrical Property Measurements of Compound Nanotubes in the B-C-N Ceramic System
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Synthesis, Analysis, and Electrical Property Measurements of Compound Nanotubes in the B-C-N Ceramic System
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Synthesis, Analysis, and Electrical Property Measurements of Compound Nanotubes in the B-C-N Ceramic System
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *