Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-mpvvr Total loading time: 0.249 Render date: 2021-08-02T07:33:55.966Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Spin-Polarized Current in Spin Valves and Magnetic Tunnel Junctions

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Spin-polarized currents can be generated by spin-dependent diffusive scattering in magnetic thin-film structures or by spin-dependent tunneling across ultrathin dielectrics sandwiched between magnetic electrodes.By manipulating the magnetic moments of the magnetic components of these spintronic materials, their resistance can be significantly changed, allowing the development of highly sensitive magnetic-field detectors or advanced magnetic memory storage elements.Whereas the magneto-resistance of useful devices based on spin-dependent diffusive scattering has hardly changed since its discovery nearly two decades ago, in the past five years there has been a remarkably rapid development in both the basic understanding of spin-dependent tunneling and the magnitude of useful tunnel magnetoresistance values.In particular, it is now evident that the magnitude of the spin polarization of tunneling currents in magnetic tunnel junctions not only is related to the spin-dependent electronic structure of the ferromagnetic electrodes but also is considerably influenced by the properties of the tunnel barrier and its interfaces with the magnetic electrodes.Whereas the maximum tunnel magnetoresistance of devices using amorphous alumina tunnel barriers and 3d transition-metal alloy ferromagnetic electrodes is about 70% at room temperature, using crystalline MgO tunnel barriers in otherwise the same structures gives tunnel magnetoresistance values of more than 350% at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mott, N.F. and Jones, H.Theory of the Properties of Metals and Alloys (Oxford University Press, 1936).Google Scholar
2Baibich, M.N.Broto, J.M.Fert, A.Dau, F.N. van, Petroff, F.Etienne, P.Creuzet, G.Friederich, A. and Chazelas, J.Phys. Rev. Lett. 61 (1988) p.2472.CrossRefGoogle Scholar
3Parkin, S.S.P.More, N. and Roche, K.P.Phys. Rev. Lett. 64 (1990) p.2304.CrossRefGoogle Scholar
4Parkin, S.S.P.Bhadra, R. and Roche, K.P.Phys. Rev. Lett. 66 (1991) p.2152.CrossRefGoogle Scholar
5Berkowitz, A.E.Mitchell, J.R.Carey, M.J.Young, A.P.Zhang, S.Spada, F.E.Parker, F.T.Hutten, A. and Thomas, G.Phys. Rev. Lett. 68 (1992) p.3745.CrossRefGoogle Scholar
6Chien, C.L. in Annu. Rev. Mater. Sci., Vol. 25, edited by Wessels, B.W. (1995) p.129.CrossRefGoogle Scholar
7Parkin, S.S.P. in Ultrathin Magnetic Structures, Vol. II edited by Heinrich, B. and Bland, J.A.C. (Springer, Berlin, 1994) p.148.Google Scholar
8Fert, A. and Bruno, P. in Ultrathin Magnetic Structures, Vol. II edited by Heinrich, B. and Bland, J.A.C. (Springer, Berlin, 1994) p.82.Google Scholar
9Parkin, S.S.P. in Annu. Rev. Mater. Sci., Vol. 25, edited by Wessels, B.W. (1995) p.357.CrossRefGoogle Scholar
10Gijs, M.A.M. and Bauer, G.E.W.Adv. Phys. 46 (1997) p.285.CrossRefGoogle Scholar
11Mathon, J.Contemp. Phys. 32 (1991) p. 143.CrossRefGoogle Scholar
12Levy, P.M. in Solid State Physics, Vol. 47, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, New York, 1994) p.367.Google Scholar
13Parkin, S.S.P.Jiang, X.Kaiser, C.Panchula, A.Roche, K. and Samant, M.Proc. IEEE 91 (2003) p.661.CrossRefGoogle Scholar
14Barthélémy, A., Fert, A.Contoura, J.-P.Bowen, M.Crosa, V.Teresa, J.M.D.Hamzica, A.Fainib, J.C.George, J.M.Grollier, J., Montaigne, F.Pailloux, F.Petroff, F. and Vouille, C.J., Magn. Magn. Mater. 242 (2002) p.68.CrossRefGoogle Scholar
15Parkin, S.S.P.Li, Z.G. and Smith, D.J.Appl. Phys. Lett. 58 (1991) p.2710.CrossRefGoogle Scholar
16Parkin, S.S.P.Phys. Rev. Lett. 71 (1993) p.1641.CrossRefGoogle Scholar
17Meiklejohn, W.H. and Bean, C.P.Phys. Rev. 102 (1956) p.1413.CrossRefGoogle Scholar
18Nogués, J. and Schuller, I.K.J. Magn. Magn. Mater. 192 (1999) p.203.CrossRefGoogle Scholar
19Parkin, S.S.P.Phys. Rev. Lett. 67 (1991) p.3598.CrossRefGoogle Scholar
20Julliere, M.Phys. Lett. 54A (1975) p.225.CrossRefGoogle Scholar
21The tunneling magnetoresistance is defined as (RAP-RP)/RP, whereRAP-RP are the resistances of a magnetic tunnel junction in its highest- and lowest-resistance state. For a simple MTJ comprising a sandwich of two ferromagnetic layers separated by a single tunnel barrier, these states correspond to antiparallel and parallel orientations of the moments, respectively.Google Scholar
22Moodera, J.S.Kinder, L.R.Wong, T.M. and Meservey, R.Phys. Rev. Lett. 74 (1995) p.3273.CrossRefGoogle Scholar
23Miyazaki, T. and Tezuka, N.J. Magn. Magn. Mater. 139 (1995) p.L231.CrossRefGoogle Scholar
24Rowell, J.M.Gurvitch, M. and Geerk, J.Phys. Rev. B 24 (1981) p.2278.CrossRefGoogle Scholar
25Mallison, W.H.Miller, R.E. and Kleinsasser, A.W.IEEE Trans. Appl. Supercond. 5 (1995) p.2330.CrossRefGoogle Scholar
26Parkin, S.S.P.Roche, K.P.Samant, M.G.Rice, P.M.Beyers, R.B.Scheuerlein, R.E.O'Sullivan, E.J., Brown, S.L.Bucchigano, J.Abraham, D.W.Lu, Y.Rooks, M.Trouilloud, P.L.Wanner, R.A. and Gallagher, W. J.J. Appl. Phys. 85 (1999) p.5828.CrossRefGoogle Scholar
27Meservey, R. and Tedrow, P.M.Phys. Rep. 238 (1994) p.173.CrossRefGoogle Scholar
28Wolf, E.L.Principles of Electron Tunneling Spectroscopy (Oxford University Press, New York, 1989).Google Scholar
29Stearns, M.B.J.Magn. Magn. Mater. 5 (1977) p.167.CrossRefGoogle Scholar
30Tsymbal, E.Y.Oleinik, I.I. and Pettifor, D.G.J.Appl. Phys. 87 (2000) p.5230.CrossRefGoogle Scholar
31Oleinik, I.I.Tsymbal, E.Y. and Pettifor, D.G.Phys. Rev. B 62 (2000) p.3952.CrossRefGoogle Scholar
32Kaiser, C.Dijken, S. van, Yang, S.-H.Yang, H. and Parkin, S.S.P.Phys. Rev. Lett. 94 247203 (2005).CrossRefGoogle Scholar
33Butler, W.H.Zhang, X.-G.Schulthess, T.C. and MacLaren, J.M.Phys. Rev. B 63 054416 (2001).CrossRefGoogle Scholar
34Mathon, J. and Umerski, A.Phys. Rev. B 63 220403 (2001).CrossRefGoogle Scholar
35Klaua, M.Ullmann, D.Barthel, J.Wulfhekel, W.Kirschner, J.Urban, R.Monchesky, T.L.Enders, A.Cochran, J.F. and Heinrich, B.Phys. Rev. B 64 134411 (2001).CrossRefGoogle Scholar
36. Bowen, M.Cros, V.Petroff, F.Fert, A.Boubeta, C.M.Costa-Krämer, J.L., Anguita, J.V.Cebollada, A.Briones, F.Teresa, J.M. de, Morellón, L., Ibarra, M.R.Güell, F., Peiró, F., and Cornet, A.Appl. Phys. Lett. 79 (2001) p.1655.CrossRefGoogle Scholar
37Faure-Vincent, J., Tiusan, C.Jouguelet, E.Canet, F.Sajieddine, M.Bellouard, C.Popova, E.Hehn, M.Montaigne, F. and Schuhl, A.Appl. Phys. Lett. 82 (2003) p.4507.CrossRefGoogle Scholar
38Mitani, S.Moriyama, T. and Takanashi, K.J.Appl. Phys. 93 (2003) p.8041.CrossRefGoogle Scholar
39Parkin, S.S.P.Kaiser, C.Panchula, A.Rice, P.Hughes, B.Samant, M. and Yang, S.-H.Nature Mater. 3 (2004) p.862.CrossRefGoogle Scholar
40Butler, W.H. and Gupta, A.Nature Mater. 3 (2004) p.845.CrossRefGoogle Scholar
41Kaiser, C.Panchula, A.F. and Parkin, S.S.P.Phys. Rev. Lett. 95 04720 (2005).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spin-Polarized Current in Spin Valves and Magnetic Tunnel Junctions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spin-Polarized Current in Spin Valves and Magnetic Tunnel Junctions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spin-Polarized Current in Spin Valves and Magnetic Tunnel Junctions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *