Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-lnsrr Total loading time: 0.673 Render date: 2021-05-09T09:11:25.942Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Processing of nanostructured metals and alloys via plastic deformation

Published online by Cambridge University Press:  31 January 2011

Yuntian Zhu
Affiliation:
North Carolina State University, Raleigh, NC 27695, USA; ytzhu@ncsu.edu
Ruslan Z. Valiev
Affiliation:
Institute of Physics of Advanced Materials, 12K.Marx St. Ufa 450000, Russia; e-mail rzvaliev@mail.rb.ru
Terence G. Langdon
Affiliation:
University of Southern California, Los Angeles, CA 90089, USA; langdon@usc.edu
Nobuhiro Tsuji
Affiliation:
Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto, 606–8502, Japan; nobuhiro.tsuji@ky5.ecs.kyoto-u.ac.jp
Ke Lu
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Rd., Shenyang 110016, China; lu@imr.ac.cn
Get access

Abstract

Plastic deformation can effectively produce nanostructured metals and alloys in bulk or surface-layer forms that are suitable for practical structural or functional applications. Such nanostructured materials are porosity-free and contamination-free, and therefore they are ideal for studying fundamental mechanisms and mechanical properties. In this article, we first give an overview of the principles of grain refinement by plastic deformation and an introduction to the reported processing techniques. Then the four most-developed and promising techniques will be described in detail: equal-channel angular pressing, high-pressure torsion, accumulative roll bonding for bulk nanostructured metals, and surface mechanical attrition treatment for nanostructured surface layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Valiev, R.Z., Islamgaliev, R., Alexandrov, I.V., Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
2. Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y.T., JOM 58 (4), 33 (2006).CrossRefGoogle Scholar
3. Zhu, Y.T., Liao, X.Z., Nat. Mater. 3, 351 (2004).CrossRefGoogle Scholar
4. Gleiter, H., Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
5. Balyanov, A., Kutnyakova, J., Amirkhanova, N.A., Stolyarov, V.V., Valiev, R.Z., Liao, X.Z., Zhao, Y.H., Jiang, Y.B., Xu, H.F., Lowe, T.C., Zhu, Y.T., Scripta Mater. 51, 225 (2004).CrossRefGoogle Scholar
6. La, P.Q., Ma, J.Q., Zhu, Y.T., Yang, J., Lu, W.M., Xue, Q.J., Valiev, R.Z., Acta Mater. 53, 5167 (2005).CrossRefGoogle Scholar
7. Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
8. Bay, B., Hansen, N., Hughes, D.A., Kuhlmannwilsdorf, D., Acta Metall. Mater. 40, 205 (1992).CrossRefGoogle Scholar
9. Huang, J.Y., Zhu, Y.T., Jiang, H., Lowe, T.C., Acta Mater. 49, 1497 (2001).CrossRefGoogle Scholar
10. Lu, K., Hansen, N., Scripta Mater. 60, 1033 (2009).CrossRefGoogle Scholar
11. Taylor, G.I., J. Inst. Met. 62, 307 (1938).Google Scholar
12. Lu, K., Lu, J., J. Mater. Sci. Technol. 15, 193 (1999).CrossRefGoogle Scholar
13. Wu, X., Tao, N., Hong, Y., Xu, B., Lu, J., Lu, K., Acta Mater. 50, 2075 (2002).CrossRefGoogle Scholar
14. Zhang, H.W., Hei, Z.K., Liu, G., Lu, J., Lu, K., Acta Mater. 51, 1871 (2003).CrossRefGoogle Scholar
15. Tao, N.R., Wang, Z.B., Tong, W.P., Sui, M.L., Lu, J., Lu, K., Acta Mater. 50, 4603 (2002).CrossRefGoogle Scholar
16. Zhu, Y.T., Butt, D.P., in Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H.S., Ed. (American Scientific Publishers, Stevenson Ranch, CA, 2003), Vol. 6, p. 853.Google Scholar
17. Koch, C.C., Nanostruct. Mater. 9, 13 (1997).CrossRefGoogle Scholar
18. Perez, R.J., Jiang, H.G., Dogan, C.P., Lavernia, E.J., Metall. Mater. Trans. A 29, 2469 (1998).CrossRefGoogle Scholar
19. Valiev, R.Z., Langdon, T.G., Prog. Mater. Sci. 51, 881 (2006).CrossRefGoogle Scholar
20. Zhilyaev, A.P., Langdon, T.G., Prog. Mater. Sci. 53, 893 (2008).CrossRefGoogle Scholar
21. Saito, Y., Utsunomiya, H., Tsuji, N., Sakai, T., Acta Mater. 47, 579 (1999).CrossRefGoogle Scholar
22. Zhu, Y.T., Jiang, H.G., Huang, J.Y., Lowe, T.C., Metall. Mater. Trans. A 32, 1559 (2001).CrossRefGoogle Scholar
23. Saito, Y., Utsunomiya, H., Suzuki, H., Sakai, A., Scripta Mater. 42, 1139 (2000).CrossRefGoogle Scholar
24. Lee, J.C., Seok, H.K., Suh, J.Y., Acta Mater. 50, 4005 (2002).CrossRefGoogle Scholar
25. Raab, G.J., Valiev, R.Z., Lowe, T.C., Zhu, Y.T., Mater. Sci. Eng. A 382, 30 (2004).CrossRefGoogle Scholar
26. Orlov, D., Beygelzimer, Y., Synkov, S., Varyukhin, V., Horita, Z., Mater. Trans. 49, 2 (2008).CrossRefGoogle Scholar
27. Toth, L.S., Arzaghi, M., Fundenberger, J.J., Beausir, B., Bouaziz, O., Arruffat-Massion, R., Scripta Mater. 60, 175 (2009).CrossRefGoogle Scholar
28. Jiang, J.H., Ding, Y., Zuo, F.Q., Shan, A.D., Scripta Mater. 60, 905 (2009).CrossRefGoogle Scholar
29. Ji, Y.H., Park, J.J., Mater. Sci. Eng. A 499, 14 (2009).CrossRefGoogle Scholar
30. Vidal, V., Thilly, L., Lecouturier, F., Renault, P.O., Acta Mater. 54, 1063 (2006)CrossRefGoogle Scholar
31. Dupouy, F., Askenazy, S., Peyrade, J.P., Legat, D., Phys. B 211, 43 (1995).CrossRefGoogle Scholar
32. Han, K., Embury, J.D., Sims, J.R., Campbell, L.J., Schneider-Muntau, H.J., Pantsyrnyi, V.I., Shlkov, A., Nikulin, A., Vorobleva, A., Mater. Sci. Eng. A 267, 99 (1999).CrossRefGoogle Scholar
33. Segal, V.M., Rezníkov, V.I., Drobyshevskly, A.E., Kopylov, V.I., Russ. Metall 99 (1981).Google Scholar
34. Nakashlma, K., Horita, Z., Nemoto, M., Langdon, T.G., Mater. Sci. Eng. A 281 82 (2000).CrossRefGoogle Scholar
35. Iwahashl, Y., Wang, J.T., Horita, Z., Nemoto, M., Langdon, T.G., Scripta Mater. 35, 143 (1996).CrossRefGoogle Scholar
36. Utyashev, F.Z., Enlkeev, F.U., Latysh, V.V., Ann. Chim. Sci. Mat. 21, 379 (1996).Google Scholar
37. Valiev, R.Z., Krasllnlkov, N.A., Tsenev, N.K., Mater Sci. Eng. A 137, 35 (1991)CrossRefGoogle Scholar
38. Valiev, R.Z., Korznlkov, A.V., Mulyukov, R.R., Mater Sci. Eng. A 168, 141 (1993)CrossRefGoogle Scholar
39. Baik, S.C., Hellmlg, R.J., Estrin, Y., Kim, H.S., Z. Metallkd. 94, 754 (2003).CrossRefGoogle Scholar
40. Xue, Q., Beyerlein, I.J., Alexander, D.J., Gray, G.T., Acta Mater. 55, 655 (2007)CrossRefGoogle Scholar
41. Vinogradov, A., Suzuki, T., Hashimoto, S., Kitagawa, K., Kuznetsov, A., Dobatkin, S., Mater. Sci. Forum 503–504, 971 (2006).CrossRefGoogle Scholar
42. Iwahashl, Y., Horita, Z., Nemoto, M., Langdon, T.G., Acta Mater. 45, 4733 (1997)CrossRefGoogle Scholar
43. Bridgman, P.W., Phys. Rev. 48, 825 (1935).CrossRefGoogle Scholar
44. Xu, C., Horita, Z., Langdon, T.G., Acta Mater. 56, 5168 (2008).CrossRefGoogle Scholar
45. Zhllyaev, A.P., Nurlslamova, G.V., Kim, B.K., Baro, M.D., Szpunar, J.A., Langdon, T.G., Acta Mater. 51, 753 (2003).CrossRefGoogle Scholar
46. Estrin, Y., Molotnikov, A., Davles, C.H.J., Lapovok, R., J. Mech. Phys. Solids 56, 1186 (2008).CrossRefGoogle Scholar
47. Kawasaki, M., Ahn, B., Langdon, T.G., Acta Mater. 58, 919 (2010).CrossRefGoogle Scholar
48. Cao, Y., Wang, Y.B., Alhajeri, S.N., Liao, X.Z., Zheng, W.L., Ringer, S.P., Langdon, T.G., Zhu, Y.T., J. Mater. Sci. 45, 765 (2010).CrossRefGoogle Scholar
49. Zhllyaev, A.P., Glmazov, A.A., Raab, G.I., Langdon, T.G., Mater. Sci. Eng. A 486 123 (2008).CrossRefGoogle Scholar
50. Perez-Prado, M.T., Zhllyaev, A.P., Phys. Rev. Lett. 102, 175504 (2009).CrossRefGoogle Scholar
51. Huang, J.Y., Zhu, Y.T., Llao, X.Z., Valiev, R.Z., Philos. Mag. Lett 84, 183 (2004).CrossRefGoogle Scholar
52. Šakal, G., Nakamura, K., Horita, Z., Langdon, T.G., Mater. Sci. Eng. A 406, 268 (2005).Google Scholar
53. Salto, Y., Tsujl, N., Utsunomiya, H., Šakal, T., Hong, R.G., Scripta Mater. 39 1221 (1998).Google Scholar
54. Tsujl, N., Salto, Y., Lee, S.H., Minammo, Y., Adv. Eng. Mater. 5, 338 (2003).CrossRefGoogle Scholar
55. Tsujl, N., Production of Bulk Nanostructured Metals by Accumulative Roll Bonding (ARB) Process. (Nova Scientific Publishers, CA, 2006).Google Scholar
56. Atzmon, M., Unruh, K.M., Johnson, W.L., J. Appl. Phys. 58, 3865 (1985).CrossRefGoogle Scholar
57. Yasuna, K., Terauchl, M., Otsukl, A., Ishihara, K.N., Shlngu, P.H., J. Appl. Phys. 82, 2435 (1997).CrossRefGoogle Scholar
58. Ohsakl, S., Kato, S., Tsujl, N., Ohkubo, T., Hono, K., Acta Mater. 55, 2885 (2007).CrossRefGoogle Scholar
59. Huang, X., Tsujl, N., Hansen, N., Minammo, Y., Mater. Sci. Eng. A 340, 265 (2003).CrossRefGoogle Scholar
60. Tsujl, N., Adv. Eng. Mater. 12, 701 (2010).CrossRefGoogle Scholar
61. Tsujl, N., Ito, Y., Saito, Y., Minammo, Y., Scripta Mater. 47, 893 (2002).CrossRefGoogle Scholar
62. Tsujl, N., Okuno, S., Koizumi, Y., Minammo, Y., Mater. Trans. 45, 2272 (2004)CrossRefGoogle Scholar
63. Huang, X.X., Hansen, N., Tsujl, N., Science 312, 249 (2006).CrossRefGoogle Scholar
64. Lu, K., Lu, J., Mater. Sci. Eng. A 375377, 38 (2004).Google Scholar
65. Li, Y.S., Zhang, Y., Tao, N.R., Lu, K., Acta Mater. 57, 761 (2009).CrossRefGoogle Scholar
66. Wang, K., Tao, N.R., Liu, G., Lu, J., Lu, K., Acta Mater. 54, 5281 (2006).CrossRefGoogle Scholar
67. Zhu, K.Y., Vassel, A., Brisset, F., Lu, K., Lu, J., Acta Mater. 52, 4101 (2004)CrossRefGoogle Scholar
68. Zhou, L., Liu, G., Ma, X.L., Lu, K., Acta Mater. 56, 78 (2008).CrossRefGoogle Scholar
69. Li, W.L., Tao, N.R., Lu, K., Scripta Mater. 59, 546 (2008).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Processing of nanostructured metals and alloys via plastic deformation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Processing of nanostructured metals and alloys via plastic deformation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Processing of nanostructured metals and alloys via plastic deformation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *