Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T18:59:45.166Z Has data issue: false hasContentIssue false

Order and Disorder in Semiconductors*

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The pervasive impetus of modern semiconductor technology has become an accepted fact. Scientific mastering of materials and processes has increased tremendously within a short time frame. Technological control has been derived from this scientific base. An industry with more than $100 billion worth of silicon devices per annum in 1994 as well as incredibly high growth rates of production and applications is an economic reality in addition to being a matter of international industrial policy. The materials aspect of using perfected single crystals and applying local doping control provides the basis of this unusual success. Earlier usage of materials differed remarkably. Bronze and steel are used for their specific bulk properties. Shaping and connecting pieces is at the heart of iron-age or bronze-age technologies. Integration inside a regular spatial array of a host crystal is the semiconductor principle. The “Royal Road” to modern microelectronics consists of initially procuring a perfected single-crystal host, then locally establishing electrical and optical properties inside the host by specific replacements of host atoms by foreign “dopants.” The somewhat disparaging expression of defect as a generic term for all deviations from the host perfection does not really convey the power of this “doping doctrine” for semiconducting materials. The early pioneers of germanium and silicon however, placed great emphasis on the experimental verification that n-type and p-type doping by elements of the adjacent columns in the periodic table were accompanied by changes in the lattice parameter with atomic substitution of the host atoms as the guiding principle.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This article was presented at the MRS 1995 Spring Meeting in San Francisco. For more information, see the Materials Research Society Symposium Proceedings, vol. 378, © 1995 Materials Research Society.

References

1.Shockley, W., Electrons and Holes in Semiconductors (van Nostrand, Princeton, 1950), esp. Chapter 1.Google Scholar
2.Cohen, B.G., Sol. St. Electron. 10 (1967) p. 33; G.L. Pearson and J. Bardeen, Phys. Rev. 75 (1949) p. 865.CrossRefGoogle Scholar
3.Grove, A., Leistiko, O., and Sah, C.T., J. Appl. Phys. 35 (1964) p. 2695.CrossRefGoogle Scholar
4.Lau, L., Mader, L., Mazure, C., Werner, C., and Orlowski, M., Appl. Phys. A49 (1989) p. 671.CrossRefGoogle Scholar
5.Nicollian, E.H. and Chatterjee, A., J. Electrochem. Soc. 141 (1994) p. 3580.CrossRefGoogle Scholar
6.Gatts, C., Duscher, G., Müllejans, H., and Rühle, M. (private communication) in press.Google Scholar
7.Queisser, H.J., J. Phys. Soc. Jpn. 18 Suppl. III (1963) p. 142.Google Scholar
8.Queisser, H.J., Finch, R.H., and Washburn, J., J. Appl. Phys. 33 (1962) p. 1536. This collaboration between UC-Berkeley and Shockley Transistor Corp. identified the oxidation-induced stacking faults by the very first TEM on Si defects.CrossRefGoogle Scholar
9. For a review, see Queisser, H.J., in Defects in Semiconductors 11, edited by Mahajan, S. and Corbett, J.W. (Mater. Res. Soc. Symp. Proc. 14, Pittsburgh, 1983) p. 323.Google Scholar
10.Tsui, P.G.Y.et al., Paper 19.5.1 at Int. Electron Dev. Conf. Francisco, 1995) in press.Google Scholar
11.Tsoukalas, D. and Tsamis, C., Appl. Phys. Lett. 66 (1995) p. 971.CrossRefGoogle Scholar
12.Stolk, P.A., Eaglesham, D.J., Gossmann, H-J., and Poate, J.M., Appl. Phys. Lett. 66 (1995) p. 1370.CrossRefGoogle Scholar
13.Delerue, C. and Lannoo, M., Mat. Sci. Forum 143–147 (1994) p. 699.Google Scholar
14.Kukimoto, H., Mal. Sci. Forum 143–147 (1994) p. 385.Google Scholar
15.Kennedy, T.A., Glaser, E.R., Murdin, B.N., Pidgeon, C.R., Prior, K.A., and Cavenett, B.C., Appl. Phys. Lett. 65 (1994) p. 1112.CrossRefGoogle Scholar
16.Tomiya, S., Morita, E., Ukita, M., Itoh, S., Nakano, K., and Ishibashi, A., Appl. Phys. Lett. 66 (1995) p. 1208.CrossRefGoogle Scholar
17.Lester, S.D., Ponce, F.A., Crawford, M.G., and Steigerwald, D.A., Appl. Phys. Lett. 66 (1995) p. 1249.CrossRefGoogle Scholar
18.Queisser, H.J., in Proc. Int. Conf. Phys. Tcchn. Compensated Semicond., edited by Gopalame, B. (Madras, 1985) p. 1.Google Scholar
19.Chattopadhyay, D.C. and Queisser, H.J., Revs. Mod. Phys. 53 (1981) p. 745.CrossRefGoogle Scholar
20.Graffand, K.Pieper, E., J. Electrochem. Soc. 128 (1981) p. 669 and Reference 25, Chapter 4, Section 1.CrossRefGoogle Scholar
21.Stutzmann, M. and Estle, T.L., eds., Hydrogen in Semiconductors (Eisevier, Amsterdam, 1991).Google Scholar
22.Cheng, Y.M. and Stavola, M., Phys. Rev. Lett. 73 (1994) p. 3419.CrossRefGoogle Scholar
23.Goetzberger, A. and Shockley, W., J. Appl. Phys. 31 (1960) p. 1821; see also Reference 25.CrossRefGoogle Scholar
24.Lee, D.M. and Rozgonyi, G.A., Appl. Phys. Lett. 65 (1994) p. 350.CrossRefGoogle Scholar
25.Graff, K., Metallic Impurities in Silicon-Device Fabrication (Springer, Heidelberg, New York, 1995). This recent book lists the most important metallic impurities in Si, gives numerical parameters for these impurities, and offers recipes for etches and means of defect observations.CrossRefGoogle Scholar
26.Sveinbjörnsson, E.Ö., Engström, O., and Södervall, U., J. Appl. Phys. 73 (1993) p. 7311.CrossRefGoogle Scholar
27.Pantelides, S.T., J. Appl. Phys. 75 (1994) p. 3264.CrossRefGoogle Scholar
28.Pistoulet, B., Roche, F.M., and Abdalla, S., Phys. Rev. B 30 (1984) p. 5987.CrossRefGoogle Scholar
29.Sheinkman, M.K. and Shik, Y. Ya., Fiz. Tekh. Poluprovodn. 10 (1976) p. 209.Google Scholar
30.Queisser, H.J., Annu. Reviews Mater. Sci. 22 (1992) p. 1.CrossRefGoogle Scholar
31.Gregory, B.L., Appl. Phys. Lett. 16 (1970) p. 67.CrossRefGoogle Scholar
32.Lang, D.V., Logan, R.A., and Jaros, M., Phys. Rev. B 19 (1979) p. 1015.CrossRefGoogle Scholar
33.Queisser, H.J., Phys. Rev. Lett. 54 (1985) p. 234; see also References 29 and 30.CrossRefGoogle Scholar
34.Queisser, H.J. and Theodorou, D.E., Phys. Rev. Lett. 43 (1979) p. 401. For a very recent application towards measuring metal-insulator transitions, see M. Smith, J.Y. Lin, and H.X. Jiang, Phys. Rev. B 51 (1995) p. 4132.CrossRefGoogle Scholar
35.Theodorou, D.E., Queisser, H.J., and Bauser, E., Appl. Phys. Lett. 41 (1982) p. 628.CrossRefGoogle Scholar
36.Kirk, W.P. and Reed, M.A., Nanostructures and Mesoscopic Systems (Academic, New York, 1992).Google Scholar
37.Bauser, E., Atomic Mechanisms in Semiconductor Liquid Phase Epitaxy,” in Handbook of Crystal Growth, Hude, D.T.J., ed. (Elsevier, Amsterdam, 1994).Google Scholar
38. For a recent example of a team effort toward optimizing InGaAs/GaAs epitaxy, see Höpner, A., Rechenberg, B., Seitz, H., Procop, H., Scheerschmidt, K., and Queisser, H.J., Phys. Stat. Sol. A 150 (1995) p. 427.CrossRefGoogle Scholar
39.Ralls, K.S., Skocpol, W.J., Jackel, L.D., Howard, R.E., Fetter, L.A., Epworth, R.W., and Tennant, D.M., Phys. Rev Lett. 52 (1984) p. 228.CrossRefGoogle Scholar
40.Rauh, H., Wacker's Atlas for Characterization of Defects in Silicon (Wacker-Chemitronic Co., Burghausen, Germany). This atlas describes the categories of defects and all important preferential etches, and gives pictorial examples of defect photomicrographs.Google Scholar
41.Queisser, H.J. and Krisen, Kristallene, (Piper, Munich, 1985), English version: The Conquest of the Microchip (Harvard University Press, Cambridge, MA, 1988).Google Scholar
42. A very recent review describes the ubiquity of H on and in Si: Pietsch, G.J., Appl. Phys. A60 (1995) p. 347.CrossRefGoogle Scholar
43.Eaglesham, David J., MRS Bulletin XIX (12) (December 1994) p. 59.Google Scholar