Hostname: page-component-5d59c44645-kw98b Total loading time: 0 Render date: 2024-02-23T11:21:38.867Z Has data issue: false hasContentIssue false

New Bulk Metallic Glasses for Applications as Magnetic-Sensing, Chemical, and Structural Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Since 1988, it has been demonstrated that metallic glasses can be made in bulk form with diameters larger than several millimeters. At present, several alloy systems with maximum diameters for glass formation exceeding 1 cm are known. As a result, Zr-, Ti-, Fe-, Co-, Ni-, and Cu-based bulk metallic glasses (BMGs) are already in use for magnetic-sensing, chemical, and structural applications. In this article, recently developed BMGs with critical diameters of more than 1 cm are summarized, and some of their industrial applications are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Inoue, A., Kohinata, M., Tsai, A.P., Masumoto, T., Mater. Trans., JIM 30, 378 (1989).Google Scholar
2.Inoue, A., Zhang, T., Masumoto, T., Mater. Trans., JIM 30, 965 (1989).Google Scholar
3.Inoue, A., Zhang, T., Masumoto, T., Mater. Trans., JIM 31, 177 (1990).Google Scholar
4.Peker, A., Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
5.Inoue, A., Nishiyama, N., Matsuda, T., Mater. Trans., JIM 37, 181 (1996).Google Scholar
6.He, Y., Schwarz, R.B., Archuleta, J.I., Appl. Phys. Lett. 69, 1861 (1996).Google Scholar
7.Ponnambalam, V., Poon, S.J., Shiflet, G.J., J. Mater. Res. 19, 1320 (2004).Google Scholar
8.Amiya, K., Inoue, A., Mater. Trans., JIM 47, 1615 (2006).Google Scholar
9.Zeng, Y., Nishiyama, N., Inoue, A., in preparation.Google Scholar
10.Zhang, Q., Zhang, W., Inoue, A., Scripta Mater. 55, 711 (2006).Google Scholar
11.Inoue, A., Acta Mater. 48, 279 (2000).Google Scholar
12.Johnson, W.L., MRS Bull. 24 (10), 42 (1999).Google Scholar
13.Inoue, A., Shen, B.L., Chang, C.T., Acta Mater. 52, 4093 (2004).Google Scholar
14.Bitoh, T., Makino, A., Inoue, A., Greer, A.L., Appl. Phys. Lett. 88, 182510 (2006).Google Scholar
15.Shen, T.D., Harms, U., Schwarz, R.B., Mater. Sci. Forum 386388, 441 (2002).Google Scholar
16.Yi, S., Lee, J.K., Kim, W.T., Kim, D.H., J. Non-Cryst. Solids 291, 132 (2001).Google Scholar
17.Zhang, T., Inoue, A., Mater. Trans., JIM 43, 708 (2002).Google Scholar
18.Wang, X.M., Yoshii, I., Inoue, A., Kim, Y.H., Kim, I.B., Mater. Trans., JIM 40, 1130 (1999).Google Scholar
19.Yi, S., Park, T.G., Kim, D.H., J. Mater. Res. 15, 2425 (2000).Google Scholar
20.Zeng, Y., Nishiyama, N., Wada, T., Louzguine, D.V., Inoue, A., Mater. Trans., JIM 47, 175 (2006).Google Scholar
21.Qin, C., Zhang, W., Nakata, H., Kimura, H.M., Asami, K., Inoue, A., Mater. Trans., JIM 46, 858 (2005).Google Scholar
22.Inoue, A., Zhang, W., Zhang, T., Kurosaka, K., Acta Mater. 49, 2645 (2001).Google Scholar
23.Qin, C., Zhang, W., Asami, K., Ohtsu, N., Inoue, A., Acta Mater. 53, 3903 (2005).Google Scholar
24.Xu, D., Duan, G., Johnson, W.L., Phys. Rev. Lett. 92, 245504 (2004).Google Scholar
25.Dai, C.L., Guo, H., Shen, Y., Li, Y., Ma, E., Xu, J., Scripta Mater. 54, 1403 (2006).Google Scholar
26.Inoue, A., Zhang, T., Mater. Trans., JIM 37, 185 (1996).Google Scholar
27. Liquidmetal Technologies Home Page, http://www.liquidmetal.com (accessed July 2007).Google Scholar
28.Conner, R.D., Dandiker, R.B., Johnson, W.L., Acta Mater. 46, 6089 (1998).Google Scholar
29.Johnson, W.L., Lu, J., Demetriou, M.D., Intermetallics 10, 1039 (2002).Google Scholar
30.Nishiyama, N., Amiya, A., Inoue, A., in Amorphous and Nanocrystalline Metals, Busch, R., Hufnagel, T.C., Eckert, J., Inoue, A., Johnson, W.L., Yavari, A.R., Eds. (Mater. Res. Soc. Symp. Proc. 806, Warrendale, PA, 2004) p. 387.Google Scholar
31.Yoshida, S., Mizushima, T., Hatanai, T., Inoue, A., IEEE Trans. Magn. 36, 3424 (2000).Google Scholar
32.Inoue, A., Proc. Jpn. Acad. 81 (B), 172 (2005).Google Scholar
33.Bacon, F.T., Electrochim. Acta 14, 569 (1969).Google Scholar
34.Warshay, M., Prokopius, P.R., Le, M., Voeckes, G., Proc. 32nd Intersociety Energy Conv. Eng. Conf. (IECEC-97) 1 (AIChE, New York, 1997) p. 228.Google Scholar
35.Buchi, F.N., Srinivasan, S., J. Electrochem. Soc. 144, 2767 (1997).Google Scholar
36.Brandon, N.P., Skinner, S., Steele, B.C.H., Annu. Rev. Mater. Res. 33, 183 (2003).Google Scholar
37.Mehta, V., Cooper, J.S., J. Power Sources 114, 32 (2003).Google Scholar
38.Wang, H.L., Turner, J.A., J. Power Sources 128, 193 (2004).Google Scholar
39.Bewer, T., Beckmann, T., Dohle, H., Mergel, J., Stolten, D., Proc. 1st European PEFC Forum (EFCF) (2001) p. 321.Google Scholar
40.Inoue, A., Zhang, W., Zhang, T., Mater. Trans., JIM 43, 1952 (2002).Google Scholar
41.Inoue, A., Shimizu, T., Yamaura, S., Fujita, Y., Takagi, S., Kimura, H.M., Mater. Trans., JIM 46, 1706 (2005).Google Scholar
42.Kakiuchi, H., Inoue, A., Ohnuki, M., Takano, Y., Yamaguchi, T., Mater. Trans., JIM 42, 678 (2001).Google Scholar
43.Hata, S., Yamada, N., Saotome, Y., Inoue, A., Shimokohbe, A., Proc. China-Jpn. Bilateral Conf. Adv. Manuf. Eng. 81; also available at www.inoue.imr.tohoku.ac.jp/en/intro.html.Google Scholar
44.Inoue, A., Zhang, T., Mater. Trans., JIM 36, 1184 (1995).Google Scholar
45.Ishida, M., Takeda, H., Watanabe, D., Amiya, K., Nishiyama, N., Kita, K., Saotome, Y., Inoue, A., Mater. Trans., JIM 45, 1239 (2004).Google Scholar
46.Tamura, M., Sato, F., Hashimoto, H., Ichiryu, K., Hatano, K., Tanaka, K., Tobita, N., “Pressure sensor,” U.S. Patent 5,144,843 (September 8, 1992).Google Scholar
47.Nishiyama, N., Amiya, K., Inoue, A., Mater. Sci. Eng., A 449, 79 (2007).Google Scholar
48.Tominaga, R., Amiya, K., Tokairin, A., Fujimoto, Y., Takahashi, S., Inoue, A., J. Metastable Nanocryst. Mater. 2425, 161 (2005).Google Scholar
49. “Micro Motion Coriolis Flow and Density,” Emerson Process Management, www.emersonprocess.com/micromotion (accessed July 2007).Google Scholar
50.Ohnishi, K., Tomikawa, Y., “Coriolis flowmeter,” U.S. Patent 6,684,716 B2 (February 3, 2004).Google Scholar
51.Zhang, T., Inoue, A., Mater. Trans., JIM 39, 1001 (1998).Google Scholar
52.Inoue, A., Makabe, E., “Production of glassy metal and apparatus,” Japan Patent P2000–271730A (October 3, 2000).Google Scholar
53.Ma, C.L., Nishiyama, N., Inoue, A., Mater. Sci. Eng., A 407, 201 (2005).Google Scholar
54.Soejima, H., Takehisa, H., Shimanuki, M., Inoue, A., J. Non-Cryst. Solids (2007) in press.Google Scholar
55.Soejima, H., Nishiyama, N., Takehisa, H., Shimanuki, M., Inoue, A., J. Metastable Nanocryst. Mater. 2425, 531 (2005).Google Scholar
56.Ma, C.L., Soejima, H., Ishihara, S., Amiya, K., Nishiyama, N., Inoue, A., Mater. Trans., JIM 45, 3223 (2004).Google Scholar
57.Zhang, T., Inoue, A., Mater. Trans., JIM 41, 1463 (2000).Google Scholar
58.Inoue, A., Nishiyama, N., Kimura, H.M., Mater. Trans., JIM 38, 179 (1997).Google Scholar
59.Schroers, J., Johnson, W.L., Phys. Rev. Lett. 93, 255506 (2004).Google Scholar
60.Takenaka, K., Wada, T., Nishiyama, N., Kimura, H.M., Inoue, A., Mater. Trans., JIM 46, 1 (2005).Google Scholar
61.Amiya, K., Inoue, A., Mater. Trans., JIM 42, 543 (2001).Google Scholar
62.Ma, H., Shi, L.L., Xu, J., Li, Y., Ma, E., Appl. Phys. Lett. 87, 181915 (2005).Google Scholar