Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-mpvvr Total loading time: 0.23 Render date: 2021-07-31T13:31:26.224Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Nano-microstructural control of phonon engineering for thermoelectric energy harvesting

Published online by Cambridge University Press:  09 March 2018

Zihang Liu
Affiliation:
Department of Physics, University of Houston, USA; zliu48@central.uh.edu
Jun Mao
Affiliation:
Department of Mechanical Engineering, University of Houston, USA; jmao5@uh.edu
Te-Huan Liu
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, USA; thliu@mit.edu
Gang Chen
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, USA; gchen2@mit.edu
Zhifeng Ren
Affiliation:
Department of Physics, University of Houston, USA; zren@uh.edu
Get access

Abstract

Manipulating the thermal conductivity of solids is important for practical applications. Due to the fact that phonons in thermoelectric materials have longer mean free paths (MFPs) than electrons, strengthening phonon scattering to reduce lattice thermal conductivity (κlat) becomes the most straightforward and effective approach to enhance the thermoelectric figure of merit, ZT, which determines the maximum device efficiency. Phonons have a wide range of MFPs in semiconductors, and different dimensions of lattice defects can be targeted to scatter particular phonons with distinct relaxation times. Designing hierarchical nano-microstructures, spanning from point defects to volume defects, would be beneficial to achieve low κlat via a full spectrum of phonon scattering. Herein, we review the formation and underlying mechanisms for lattice defects and highlight the role of all-scale hierarchical nano-microstructure on phonon engineering. Existing challenges in simulations are also discussed.

Type
Materials for Energy Harvesting
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moore, A.L., Shi, L., Mater. Today 17, 163 (2014).CrossRefGoogle Scholar
Tian, Z.T., Lee, S., Chen, G., J. Heat Transfer 135, 061605 (2013).CrossRefGoogle Scholar
Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B Condens. Matter 47, 12727 (1993).CrossRefGoogle Scholar
Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B Condens. Matter 47, 16631 (1993).CrossRefGoogle Scholar
Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P., Gogna, P., Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
Mao, J., Liu, Z.H., Ren, Z.F., NPJ Quantum Mater. 1, 16028 (2016).CrossRefGoogle Scholar
Tan, G.J., Zhao, L.D., Kanatzidis, M.G., Chem. Rev. 116, 12123 (2016).CrossRefGoogle Scholar
Zhu, T.J., Liu, Y.T., Fu, C.G., Heremans, J.P., Snyder, J.G., Zhao, X.B., Adv. Mater. 29, 1605884 (2017).CrossRefGoogle Scholar
Minnich, A.J., Johnson, J.A., Schmidt, A.J., Esfarjani, K., Dresselhaus, M.S., Nelson, K.A., Chen, G., Phys. Rev. Lett. 107, 095901 (2011).CrossRefGoogle Scholar
Esfarjani, K., Chen, G., Stokes, H.T., Phys. Rev. B Condens. Matter 84, 085204 (2011).CrossRefGoogle Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y.C., Minnich, A., Yu, B., Yan, X., Wang, D.Z., Muto, A., Vashaee, D., Chen, X.Y., Liu, J.M., Dresselhaus, M.S., Chen, G., Ren, Z.F., Science 320, 634 (2008).CrossRefGoogle Scholar
Biswas, K., He, J.Q., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G., Nature 489, 414 (2012).CrossRefGoogle Scholar
Zhao, L.D., Dravid, V.P., Kanatzidis, M.G., Energy Environ. Sci. 7, 251 (2014).CrossRefGoogle Scholar
Kim, S.I., Lee, K.H., Mun, H.A., Kim, H.S., Hwang, S.W., Roh, J.W., Yang, D.J., Shin, W.H., Li, X.S., Lee, Y.H., Snyder, G.J., Kim, S.W., Science 348, 109 (2015).CrossRefGoogle Scholar
Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G., Energy Environ. Sci. 2, 466 (2009).CrossRefGoogle Scholar
Hong, J.H., Hu, Z.X., Probert, M., Li, K., Lv, D.H., Yang, X.N., Gu, L., Mao, N.N., Feng, Q.L., Xie, L.M., Zhang, J., Wu, D.Z., Zhang, Z.Y., Jin, C.H., Ji, W., Zhang, X.X., Yuan, J., Zhang, Z., Nat. Commun. 6, 6293 (2015).CrossRefGoogle Scholar
Wu, D., Pei, Y.L., Wang, Z., Wu, H.J., Huang, L., Zhao, L.D., He, J.Q., Adv. Funct. Mater. 24, 7763 (2014).CrossRefGoogle Scholar
Mao, J., Wang, Y., Liu, Z., Ge, B., Ren, Z., Nano Energy 32, 174 (2017).CrossRefGoogle Scholar
DeHoff, R., Thermodynamics in Materials Science, 2nd ed. (CRC Press, New York, 2006).Google Scholar
Liu, Y., Zhao, L.D., Liu, Y.C., Lan, J.L., Xu, W., Li, F., Zhang, B.P., Berardan, D., Dragoe, N., Lin, Y.H., J. Am. Chem. Soc. 133, 20112 (2011).CrossRefGoogle Scholar
Tuomisto, F., Ranki, V., Saarinen, K., Look, D.C., Phys. Rev. Lett. 91, 205502 (2003).CrossRefGoogle Scholar
Hu, L.P., Zhu, T.J., Liu, X.H., Zhao, X.B., Adv. Funct. Mater. 24, 5211 (2014).CrossRefGoogle Scholar
Zhu, T.J., Hu, L.P., Zhao, X.B., He, J., Adv. Sci. 3, 1600004 (2016).CrossRefGoogle Scholar
Callaway, J., von Baeyer, H.C., Phys. Rev. 120, 1149 (1960).CrossRefGoogle Scholar
Yang, J., Xi, L.L., Qiu, W.J., Wu, L.H., Shi, X., Chen, L.D., Yang, J.H., Zhang, W.Q., Uher, C., Singh, D.J., NPJ Comput. Mater. 2, 15015 (2016).CrossRefGoogle Scholar
He, R., Zhu, H.T., Sun, J.Y., Mao, J., Reith, H., Chen, S., Schierning, G., Nielsch, K., Ren, Z.F., Mater. Today. Phys. 1, 24 (2017).CrossRefGoogle Scholar
Hull, D., Bacon, D.J., Introduction to Dislocations, 5th ed. (Butterworth-Heinemann, Oxford, 2001).Google Scholar
Kuhlmann-Wilsdorf, D., Mater. Sci. Eng. A 113, 1 (1989).CrossRefGoogle Scholar
Meng, X.F., Liu, Z.H., Cui, B., Qin, D.D., Geng, H.Y., Cai, W., Fu, L.W., He, J.Q., Ren, Z.F., Sui, J.H., Adv. Energy Mater. 7, 1602582 (2017).CrossRefGoogle Scholar
Chen, Z.W., Ge, B.H., Li, W., Lin, S.Q., Shen, J.W., Chang, Y.J., Hanus, R., Snyder, G.J., Pei, Y.Z., Nat. Commun. 8, 13828 (2017).CrossRefGoogle Scholar
Chen, Z.W., Jian, Z.Z., Li, W., Chang, Y.J., Ge, B.H., Hanus, R., Yang, J., Chen, Y., Huang, M.X., Snyder, G.J., Pei, Y.Z., Adv. Mater. 29, 1606768 (2017).CrossRefGoogle Scholar
Hirsch, P.B., Silcox, J., Smallman, R.E., Westmacott, K.H., Philos. Mag. 3, 897 (1958).CrossRefGoogle Scholar
Carruthers, P., Rev. Mod. Phys. 33, 92 (1961).CrossRefGoogle Scholar
Li, M.D., Ding, Z.W., Meng, Q.P., Zhou, J.W., Zhu, Y.M., Liu, H., Dresselhaus, M.S., Chen, G., Nano Lett. 17, 1587 (2017).CrossRefGoogle Scholar
Xie, W.J., He, J., Kang, H.J., Tang, X.F., Zhu, S., Laver, M., Wang, S.Y., Copley, J.R., Brown, C.M., Zhang, Q.J., Nano Lett. 10, 3283 (2010).CrossRefGoogle Scholar
Liu, Z.H., Gao, W.H., Meng, X.F., Li, X.B., Mao, J., Wang, Y.M., Shuai, J., Cai, W., Ren, Z.F., Sui, J.H., Scr. Mater. 127, 72 (2017).CrossRefGoogle Scholar
Su, X.L., Wei, P., Li, H., Liu, W., Yan, Y.G., Li, P., Su, C.Q., Xie, C.J., Zhao, W.Y., Zhai, P.C., Zhang, Q.J., Tang, X.F., Uher, C., Adv. Mater. 29, 1602013 (2017).CrossRefGoogle Scholar
Cook, B.A., Kramer, M.J., Wei, X., Harringa, J.L., Levin, E.M., J. Appl. Phys. 101, 053715 (2007).CrossRefGoogle Scholar
Mao, J., Wang, Y.M., Kim, H.S., Liu, Z.H., Saparamadu, U., Tian, F., Dahal, K., Sun, J.Y., Chen, S., Liu, W.S., Nano Energy 17, 279 (2015).CrossRefGoogle Scholar
Gao, W., Yi, X., Sun, B., Meng, X., Cai, W., Zhao, L., Acta Mater. 132, 405 (2017).CrossRefGoogle Scholar
Liu, Z.H., Wang, Y.M., Gao, W.H., Mao, J., Geng, H.Y., Shuai, J., Cai, W., Sui, J.H., Ren, Z.F., Nano Energy 31, 194 (2017).CrossRefGoogle Scholar
Lu, K., Nat. Rev. Mater. 1, 16019 (2016).CrossRefGoogle Scholar
Klemens, P.G., Int. J. Thermophys. 15, 1345 (1994).CrossRefGoogle Scholar
Minnich, A., J. Phys. Condens. Matter 27, 053202 (2015).CrossRefGoogle Scholar
Callister, W.D., Rethwisch, D.G., Materials Science and Engineering, 4th ed. (Wiley, New York, 2011).Google Scholar
Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., Kanatzidis, M.G., Science 303, 818 (2004).CrossRefGoogle Scholar
Makongo, J.P.A., Misra, D.K., Zhou, X.Y., Pant, A., Shabetai, M.R., Su, X.L., Uher, C., Stokes, K.L., Poudeu, P.F.P., J. Am. Chem. Soc. 133, 18843 (2011).CrossRefGoogle Scholar
Liu, Z.H., Pei, Y.L., Geng, H.Y., Zhou, J.C., Meng, X.F., Cai, W., Liu, W.S., Sui, J.H., Nano Energy 13, 554 (2015).CrossRefGoogle Scholar
Zhao, L.D., Zhang, X., Wu, H.J., Tan, G.J., Pei, Y.L., Xiao, Y., Chang, C., Wu, D., Chi, H., Zheng, L., Gong, S.K., Uher, C., He, J.Q., Kanatzidis, M.G., J. Am. Chem. Soc. 138, 2366 (2016).CrossRefGoogle Scholar
He, J.Q., Girard, S.N., Kanatzidis, M.G., Dravid, V.P., Adv. Funct. Mater. 20, 764 (2010).CrossRefGoogle Scholar
Gelbstein, Y., Dado, B., Ben-Yehuda, O., Sadia, Y., Dashevsky, Z., Dariel, M.P., Chem. Mater. 22, 1054 (2009).CrossRefGoogle Scholar
Meng, X.F., Cai, W., Liu, Z.H., Li, J., Geng, H.Y., Sui, J.H., Acta Mater. 98, 405 (2015).CrossRefGoogle Scholar
Page, A., Van der Ven, A., Poudeu, P., Uher, C., J. Mater. Chem. A 4, 13949 (2016).CrossRefGoogle Scholar
Zhang, Q., Chere, E.K., Wang, Y.M., Kim, H.S., He, R., Cao, F., Dahal, K., Broido, D., Chen, G., Ren, Z.F., Nano Energy 22, 572 (2016).CrossRefGoogle Scholar
Li, J.H., Tan, Q., Li, J.F., Liu, D.W., Li, F., Li, Z.Y., Zou, M., Wang, K., Adv. Funct. Mater. 23, 4317 (2013).CrossRefGoogle Scholar
Kim, K.T., Choi, S.Y., Shin, E.H., Moon, K.S., Koo, H.Y., Lee, G.-G., Ha, G.H., Carbon 52, 541 (2013).CrossRefGoogle Scholar
Zong, P.A., Hanus, R., Dylla, M., Tang, Y.S., Liao, J.C., Zhang, Q.H., Snyder, G.J., Chen, L.D., Energy Environ. Sci. 10, 183 (2017).CrossRefGoogle Scholar
Smith, D.S., Alzina, A., Bourret, J., Nait-Ali, B., Pennec, F., Tessier-Doyen, N., Otsu, K., Matsubara, H., Elser, P., Gonzenbach, U.T., J. Mater. Res. 28, 2260 (2013).CrossRefGoogle Scholar
Schlichting, K.W., Padture, N.P., Klemens, P.G., J. Mater. Sci. 36, 3003 (2001).CrossRefGoogle Scholar
Lee, H., Vashaee, D., Wang, D.Z., Dresselhaus, M.S., Ren, Z.F., Chen, G., J. Appl. Phys. 107, 094308 (2010).CrossRefGoogle Scholar
Khan, A.U., Kobayashi, K., Tang, D.-M., Yamauchi, Y., Hasegawa, K., Mitome, M., Xue, Y.M., Jiang, B.Z., Tsuchiya, K., Golberg, D., Bando, Y., Mori, T., Nano Energy 31, 152 (2017).CrossRefGoogle Scholar
Kim, W., Majumdar, A., J. Appl. Phys. 99, 084306 (2006).CrossRefGoogle Scholar
Kundu, A., Mingo, N., Broido, D.A., Stewart, D.A., Phys. Rev. B Condens. Matter 84, 125426 (2011).CrossRefGoogle Scholar
Zhang, H., Minnich, A.J., Sci. Rep. 5, 8995 (2015).CrossRefGoogle Scholar
Zuckerman, N., Lukes, J.R., Phys. Rev. B 77, 094302 (2008).CrossRefGoogle Scholar
Tian, Z.T., Garg, J., Esfarjani, K., Shiga, T., Shiomi, J., Chen, G., Phys. Rev. B Condens. Matter 85, 184303 (2012).CrossRefGoogle Scholar
Klemens, P.G., Proc. Phys. Soc. A 68, 1113 (1955).CrossRefGoogle Scholar
Callaway, J., Phys. Rev. 113, 1046 (1959).CrossRefGoogle Scholar
Liu, Z.H., Mao, J., Sui, J.H., Ren, Z.F., Energy Environ. Sci. 11, 23 (2018).CrossRefGoogle Scholar
Liu, Z.H., Wang, Y.M., Mao, J., Geng, H.Y., Shuai, J., Wang, Y.X., He, R., Cai, W., Sui, J.H., Ren, Z.F., Adv. Energy Mater. 6, 1502269 (2016).CrossRefGoogle Scholar
Zhao, K.P., Qiu, P.F., Song, Q.F., Blichfeld, A.B., Eikeland, E., Ren, D., Ge, B.H., Iversen, B.B., Shi, X., Chen, L.D., Mater. Today Phys. 1, 14 (2017).CrossRefGoogle Scholar
Giustino, F., Cohen, M.L., Louie, S.G., Phys. Rev. B Condens. Matter 76, 165108 (2007).CrossRefGoogle Scholar
Sjakste, J., Vast, N., Calandra, M., Mauri, F., Phys. Rev. B Condens. Matter 92, 054307 (2015).CrossRefGoogle Scholar
Sun, J.F., Shuai, J., Ren, Z.F., Singh, D.J., Mater. Today Phys. 2, 40 (2017).CrossRefGoogle Scholar
Liu, T.-H., Zhou, J.W., Liao, B.L., Singh, D.J., Chen, G., Phys. Rev. B Condens. Matter 95, 075206 (2017).CrossRefGoogle Scholar
Qiu, B., Tian, Z.T., Vallabhaneni, A., Liao, B.L., Mendoza, J.M., Restrepo, O.D., Ruan, X.L., Chen, G., Europhys. Lett. 109, 57006 (2015).CrossRefGoogle Scholar
Luo, T., Garg, J., Shiomi, J., Esfarjani, K., Chen, G., Europhys. Lett. 101, 16001 (2013).CrossRefGoogle Scholar
Liu, T.-H., Zhou, J.W., Li, M.D., Ding, Z.W., Song, Q.C., Liao, B.L., Fu, L., Chen, G., Proc. Natl. Acad. Sci. U.S.A., (2018) doi:10.1073/pnas.1715477115.Google Scholar
Song, Q.C., Liu, T.-H., Zhou, J.W., Ding, Z.W., Chen, G., Mater. Today. Phys. 2, 69 (2017).CrossRefGoogle Scholar
Swartz, E.T., Pohl, R.O., Rev. Mod. Phys. 61, 605 (1989).CrossRefGoogle Scholar
Tian, Z.T., Esfarjani, K., Chen, G., Phys. Rev. B Condens. Matter 86, 235304 (2012).CrossRefGoogle Scholar
Seebauer, E.G., Kratzer, M.C., Mater. Sci. Eng. R 55, 57 (2006).CrossRefGoogle Scholar
Mao, J., Wu, Y.X., Song, S.W., Shuai, J., Liu, Z.H., Pei, Y.Z., Ren, Z.F., Mater. Today Phys. 3, 1 (2017).CrossRefGoogle Scholar
Liu, Z., Mao, J., Peng, S., Zhou, B., Gao, W., Sui, J., Pei, Y., Ren, Z., Mater. Today Phys. 2, 54 (2017).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nano-microstructural control of phonon engineering for thermoelectric energy harvesting
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nano-microstructural control of phonon engineering for thermoelectric energy harvesting
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nano-microstructural control of phonon engineering for thermoelectric energy harvesting
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *