Skip to main content Accessibility help
×
Home
Hostname: page-component-65d66dc8c9-nxpqk Total loading time: 0.234 Render date: 2021-09-28T18:47:47.653Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Monolithic magneto-optical oxide thin films for on-chip optical isolation

Published online by Cambridge University Press:  11 June 2018

Qingyang Du
Affiliation:
Massachusetts Institute of Technology, USA; qydu@mit.edu
Takian Fakhrul
Affiliation:
Massachusetts Institute of Technology, USA; takianf@mit.edu
Yan Zhang
Affiliation:
University of Electronic Science and Technology of China, China; y_zhang@std.uestc.edu.cn
Juejun Hu
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; hujuejun@mit.edu
Caroline A. Ross
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; caross@mit.edu
Get access

Abstract

Optical isolators, devices that only allow unidirectional light propagation, constitute an essential building block for photonic integrated circuits. For near-infrared communications wavelengths, most current isolator designs rely on the incorporation of magneto-optical (MO) materials to break time-reversal symmetry, such as iron garnets or magnetically substituted semiconductors. MO garnets form the backbone of traditional bulk isolators, but suffer from large lattice and thermal mismatch with common semiconductor substrates, which has significantly impeded their integration into on-chip optical isolators. Materials innovations over the past few years have overcome these barriers and enabled monolithic deposition of MO oxide thin films on silicon using techniques such as pulsed laser deposition and magnetron sputtering. On-chip optical isolator devices with polarization diversity in the telecommunication band have been demonstrated based on these materials. This article reviews the latest technological breakthroughs in MO oxide material growth as well as device design and integration strategies toward practical implementation of on-chip optical isolation.

Type
Materials for Nonreciprocal Photonics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yu, Z., Fan, S., Nat. Photonics 3, 91 (2009).CrossRefGoogle Scholar
Lira, H., Yu, Z., Fan, S., Lipson, M., Phys. Rev. Lett. 109, 033901 (2012).CrossRefGoogle Scholar
Shi, Y., Yu, Z., Fan, S., Nat. Photonics 9, 388 (2015).CrossRefGoogle Scholar
Karki, D., Stenger, V., Pollick, A., Levy, M., J. Appl. Phys. 121, 233101 (2017).CrossRefGoogle Scholar
Levy, M., IEEE J. Sel. Top. Quantum Electron. 8, 1300 (2002).CrossRefGoogle Scholar
Zhang, C., Dulal, P., Stadler, B., Hutchings, D., Sci. Rep. 7, 5820 (2017).CrossRefGoogle Scholar
Dötsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F., J. Opt. Soc. Am. B 22, 240 (2005).CrossRefGoogle Scholar
Zaets, W., Ando, K., IEEE Photonics Technol. Lett. 11, 1012 (1999).CrossRefGoogle Scholar
Montoya, J., Parameswaran, K., Hensley, J., Allen, M., Ram, R., J. Appl. Phys. 106, 023108 (2009).CrossRefGoogle Scholar
Tang, L., Drezdzon, S.M., Yoshie, T., Opt. Express 16, 16202 (2008).CrossRefGoogle Scholar
Hammer, J., Ozgur, G., Evans, G., Butler, J., J. Appl. Phys. 100, 103103 (2006).CrossRefGoogle Scholar
Dionne, G., Allen, G., Haddad, P., Ross, C., Lax, B., MIT Lincoln Lab. J. 15, 323 (2005).Google Scholar
Hutchings, D., Holmes, B., Zhang, C., Dulal, P., Block, A., Sung, S., Seaton, N., Stadler, B., IEEE Photonics J. 5, 6602512 (2013).CrossRefGoogle Scholar
Shimizu, H., Nakano, Y., J. Lightwave Technol. 24, 38 (2006).CrossRefGoogle Scholar
Van Parys, W., Van Thourhout, D., Baets, R., Dagens, B., Decobert, J., Le Gouezigou, O., Make, D., Vanheertum, R., Lagae, L., in CLEO (2008), https://www.cleoconference.org/home.Google Scholar
Shintaku, T., Appl. Phys. Lett. 73, 1946 (1998).CrossRefGoogle Scholar
Hemme, H., Dötsch, H., Hertel, P., Appl. Opt. 29, 2741 (1990).CrossRefGoogle Scholar
El-Ganainy, R., Kumar, P., Levy, M., Opt. Lett. 38, 61 (2013).CrossRefGoogle Scholar
Yokoi, H., Mizumoto, T., Shoji, Y., Appl. Opt. 42, 6605 (2003).CrossRefGoogle Scholar
Fujita, J., Levy, M., Osgood, R., Wilkens, L., Dötsch, H., Appl. Phys. Lett. 76, 2158 (2000).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Opt. Express 15, 639 (2007).CrossRefGoogle Scholar
Kono, N., Kakihara, K., Saitoh, K., Koshiba, M., Opt. Express 15, 7737 (2007).CrossRefGoogle Scholar
Zhu, H., Jiang, C., J. Lightwave Technol. 29, 1647 (2011).CrossRefGoogle Scholar
Yang, J., Roh, J., Ok, S., Woo, D., Byun, Y., Lee, W., Mizumoto, T., Lee, S., IEEE Trans. Magn. 41, 3520 (2005).CrossRefGoogle Scholar
Shui, K., Nie, L., Zhang, Y., Peng, B., Xie, J., Deng, L., Bi, L., Opt. Express 24, 12856 (2016).CrossRefGoogle Scholar
Kono, N., Koshiba, M., Opt. Express 13, 9155 (2005).CrossRefGoogle Scholar
Boudiar, T., Payet-Gervy, B., Blanc-Mignon, M.-F., Rousseau, J.-J., Le Berre, M., Joisten, H., J. Magn. Magn. Mater. 284, 77 (2004).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I.-W., Osgood, R.M. Jr., Appl. Phys. Lett. 92, 071117 (2008).CrossRefGoogle Scholar
Tien, M.-C., Mizumoto, T., Pintus, P., Kromer, H., Bowers, J.E., Opt. Express 19, 11740 (2011).CrossRefGoogle Scholar
Mizumoto, T., Shoji, Y., Takei, R., Materials 5, 985 (2012).CrossRefGoogle Scholar
Ghosh, S., Keyvavinia, S., Van Roy, W., Mizumoto, T., Roelkens, G., Baets, R., Opt. Express 20, 1839 (2012).CrossRefGoogle Scholar
Stadler, B., Mizumoto, T., IEEE Photonics J. 6, 1 (2014).CrossRefGoogle Scholar
Pintus, P., Huang, D., Zhang, C., Shoji, Y., Mizumoto, T., Bowers, J.E., J. Lightwave Technol. 35, 1429 (2017).CrossRefGoogle Scholar
Zaman, T.R., Guo, X., Ram, R.J., J. Lightwave Technol. 26, 291 (2008).CrossRefGoogle Scholar
Zaman, T., Guo, X., Ram, R., Appl. Phys. Lett. 90, 023514 (2007).CrossRefGoogle Scholar
Baba, K., Takase, F., Miyagi, M., Opt. Commun. 139, 35 (1997).CrossRefGoogle Scholar
Amata, H., Royer, F., Choueikani, F., Jamon, D., Parsy, F., Broquin, J.-E., Neveu, S., Rousseau, J.J., Appl. Phys. Lett. 99, 251108 (2011).CrossRefGoogle Scholar
Bi, L., Hu, J., Jiang, P., Kim, D., Dionne, G., Kimerling, L., Ross, C., Nat. Photonics 5, 758 (2011).CrossRefGoogle Scholar
Bi, L., “Magneto-Optical Oxide Thin Films and Integrated Nonreciprocal Photonic Devices,” PhD dissertation, Massachusetts Institute of Technology (2011).Google Scholar
Goto, T., Onbaşlı, M., Ross, C., Opt. Express 20, 28507 (2012).CrossRefGoogle Scholar
Bi, L., Hu, J., Jiang, P., Kim, H., Kim, D., Onbasli, M., Dionne, G., Ross, C., Materials 6, 5094 (2013).CrossRefGoogle Scholar
Bi, L., Hu, J., Dionne, G., Kimerling, L., Ross, C., in Integrated Optics: Devices, Materials, and Technologies XV (International Society for Optics and Photonics, 2011), vol. 7941, p. 794105.CrossRefGoogle Scholar
Goto, T., Onbasli, M., Kim, D., Singh, V., Inoue, M., Kimerling, L., Ross, C., Ross, C.A., Opt. Express 22, 19047 (2014).CrossRefGoogle Scholar
Onbasli, M., Beran, L., Zahradník, M., Kučera, M., Antoš, R., Mistrík, J., Dionne, G., Veis, M., Ross, C., Sci. Rep. 6, 23640 (2016).CrossRefGoogle Scholar
Hu, J., Sun, X., Du, Q., Onbasli, M., Ross, C., Proc. SPIE 9750 (2016), p. 97500W-1.Google Scholar
Sun, X., Du, Q., Goto, T., Onbasli, M., Kim, D., Aimon, N., Hu, J., Ross, C., ACS Photonics 2, 856 (2015).CrossRefGoogle Scholar
Sung, S., Qi, X., Stadler, B., Appl. Phys. Lett. 87, 121111 (2005).CrossRefGoogle Scholar
Sung, S., Qi, X., Stadler, B., in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CThN5.Google Scholar
Hansen, P., Krumme, J., Thin Solid Films 114, 69 (1984).CrossRefGoogle Scholar
Onbasli, M.C., Goto, T., Sun, X., Huynh, N., Ross, C.A., Opt. Express 22 (21), 25183 (2014).CrossRefGoogle Scholar
Dulal, P., Block, A., Gage, T., Haldren, H., Sung, S., Hutchings, D., Stadler, B., ACS Photonics 3, 1818 (2016).CrossRefGoogle Scholar
Yoshimoto, T., Goto, T., Isogai, R., Nakamura, Y., Takagi, H., Ross, C.A., Inoue, M., Opt. Express 24, 8746 (2016).CrossRefGoogle Scholar
Lim, A.E.-J., Song, J., Fang, Q., Li, C., Tu, X., Duan, N., Chen, K.K., Tern, R.P.-C., Liow, T.-Y., IEEE J. Sel. Top. Quantum Electron. 20, 405 (2014).CrossRefGoogle Scholar
Bi, L., Hu, J., Dionne, G.F., Kimerling, L., Ross, C., Proc. SPIE 7941 (International Society for Optics and Photonics, 2011), p. 794105.Google Scholar
Dai, D., Bauters, J., Bowers, J.E., Light Sci. Appl. 1, e1 (2012).CrossRefGoogle Scholar
Ishida, E., Miura, K., Shoji, Y., Yokoi, H., Mizumoto, T., Nishiyama, N., Arai, S., Opt. Express 25, 452 (2017).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Monolithic magneto-optical oxide thin films for on-chip optical isolation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Monolithic magneto-optical oxide thin films for on-chip optical isolation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Monolithic magneto-optical oxide thin films for on-chip optical isolation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *