Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T19:14:14.088Z Has data issue: false hasContentIssue false

Hard Materials with Tunable Porosity

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Porous metals and ceramic materials are of critical importance in catalysis, sensing, and adsorption technologies and exhibit unusual mechanical, magnetic, electrical, and optical properties compared to nonporous bulk materials. Materials with nanoscale porosity often are formed through molecular self-assembly processes that lock in a particular length scale; consider, for instance, the assembly of crystalline mesoporous zeolites with a pore size of 2–50 nm or the evolution of structural domains in block copolymers. Of recent interest has been the identification of general kinetic pattern-forming principles that underlie the formation of mesoporous materials without a locked- in length scale. When materials are kinetically locked out of thermodynamic equilibrium, temperature or chemistry can be used as a “knob” to tune their microstructure and properties. In this issue of the MRS Bulletin, we explore new porous metal and ceramic materials, which we collectively refer to as “hard” materials, formed by pattern-forming instabilities, either in the bulk or at interfaces, and discuss how such nonequilibrium processing can be used to tune porosity and properties. The focus on hard materials here involves thermal, chemical, and electrochemical processing usually not compatible with soft (for example, polymeric) porous materials and generally adds to the rich variety of routes to fabricate porous materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ishizaki, K., Porous Materials: Process Technology and Applications (Kluwer, New York, 1998).CrossRefGoogle Scholar
2Dietterle, M., Will, T., Kolb, D.M., Surf. Sci. 327, L495 (1995).CrossRefGoogle Scholar
3Pichardo-Pedrero, E., Beltramo, G.L., Giesen, M., Appl. Phys. A 87, 461 (2007).CrossRefGoogle Scholar
4Cahn, J.W., Acta Metall. 10, 907 (1962).CrossRefGoogle Scholar
5Cahn, J.W., Hilliard, J.E., J. Chem. Phys. 28, 258 (1958).CrossRefGoogle Scholar
6Cahn, J.W., Hilliard, J.E., J. Chem. Phys. 31, 688 (1959).CrossRefGoogle Scholar
7Seebauer, E.G., Allen, C.E., Prog. Surf. Sci. 49, 265 (1995).CrossRefGoogle Scholar
8Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K., Nature 410, 450 (2001).CrossRefGoogle Scholar
9Calvert, C., Johnson, R., J. Chem. Soc. 19, 434 (1866).CrossRefGoogle Scholar
10Newman, R.C., Corcoran, S.G., Erlebacher, J., Aziz, M.J., Sieradzki, K., MRS Bull. 24, 24 (1999).CrossRefGoogle Scholar
11Forty, A.J., Nature 282, 597 (1979).CrossRefGoogle Scholar
12Forty, A.J., in Sir Charles Frank: An 80th Birthday Tribute, Chamber, R.B., Ed. (Adam Hilger, Bristol, 1991), p. 164.Google Scholar
13Rambert, S., Landolt, D., Electrochim. Acta 31, 1421 (1986).CrossRefGoogle Scholar
14Rambert, S., Landolt, D., Electrochim. Acta 31, 1433 (1986).CrossRefGoogle Scholar
15Smith, A.J., Tran, T., Wainwright, M.S., J. Appl. Electrochem. 29, 1085 (1999).CrossRefGoogle Scholar
16Min, U.-S., Li, J.C.M., J. Mater. Res. 9, 2878 (1994).CrossRefGoogle Scholar
17Koh, S., Hahn, N., Yu, C.F., Strasser, P., J. Electrochem. Soc. 155, B1281 (2008).CrossRefGoogle Scholar
18Smith, A.J., Trimm, D.L., Annu. Rev. Mater. Res. 35, 127 (2005).CrossRefGoogle Scholar
19Erlebacher, J., J. Electrochem. Soc. 151, C614 (2004).CrossRefGoogle Scholar
20Rugolo, J., Erlebacher, J., Sieradzki, K., Nat. Mater. 5, 946 (2006).CrossRefGoogle Scholar
21Snyder, J., Livi, K., Erlebacher, J., J. Electrochem. Soc. 155, C464 (2008).CrossRefGoogle Scholar
22Snyder, J., Asanithi, P., Dalton, A.B., Erlebacher, J., Adv. Mater. 20 4883 (2008).CrossRefGoogle Scholar
23Huang, J.-F., Chem. Commun. 1270 (2009).CrossRefGoogle Scholar
24Zeis, R., Mathur, A., Fritz, G., Lee, J., Erlebacher, J., J. Power Sources 165, 65 (2007).CrossRefGoogle Scholar
25Xu, C., Su, J.X., Xu, X.H., Liu, P.P., Zhao, H.J., Tian, F., Ding, Y., J. Am. Chem. Soc. 129, 42 (2007).CrossRefGoogle Scholar
26Ahl, S., Cameron, P.J., Liu, J., Knoll, W., Erlebacher, J., Yu, F., Plasmonics 3, 13 (2007).CrossRefGoogle Scholar
27Yu, F., Ahl, S., Caminade, A.M., Majoral, J.P., Knoll, W., Erlebacher, J., Anal. Chem. 78, 7346 (2006).CrossRefGoogle Scholar
28Xu, C., Xu, X., Su, J., Ding, Y., J. Catal. 252, 243 (2007).CrossRefGoogle Scholar
29Cammarata, R.C., Prog. Surf. Sci., 46, 1 (1994).CrossRefGoogle Scholar
30Jin, H.J., Parida, S., Kramer, D., Weissmüller, J., Surf. Sci. 602, 3588 (2008).CrossRefGoogle Scholar
31Kramer, D., Viswanth, R.N., Weissmüller, J., Nano Lett. 4, 793 (2004).CrossRefGoogle Scholar
32Weissmüller, J., Viswanath, R.N., Kramer, D., Zimmer, P., Wurschum, R., Gleiter, H., Science 300, 312 (2003).CrossRefGoogle Scholar
33Qiu, H.J., Xu, C.X., Huang, X.R., Ding, Y., Qu, Y.B., Gao, P.J., J. Phys. Chem. C 113, 2521 (2009).CrossRefGoogle Scholar
34Ciesielski, P.N., Scott, A.M., Faulkner, C.J., Berron, B.J., Cliffel, D.E., Jennings, G.K., ACS Nano 2, 2465 (2008).CrossRefGoogle Scholar
35Suzuki, Y., Morgan, P.E.D., Ohji, T., J. Am. Ceram. Soc. 83, 2091 (2000).CrossRefGoogle Scholar
36Suzuki, , Yamada, T., Sakakibara, S., Ohji, T., Ceram. Eng. Sci. Proc. 21, 19 (2000).CrossRefGoogle Scholar
37Pugh, D.V., Dursun, A., Corcoran, S.G., J. Mater. Res. 18, 216 (2003).CrossRefGoogle Scholar
38Chen, L.-Y., Yu, J.-S., Fujita, T., Chen, M.-W., Adv. Funct. Mat. 19, 1 (2009).Google Scholar
39Ding, Y., Chen, M., Erlebacher, J., J. Am. Chem. Soc., 126, 6876 (2004).CrossRefGoogle Scholar
40Nyce, G.W., Hayes, J.R., Hamza, A.V., Satcher, J.H., Chem. Mater. 19, 344 (2007).CrossRefGoogle Scholar
41Toberer, E.S., Löfvander, J.P., Seshadri, R., Chem. Mater. 18, 1047 (2006).CrossRefGoogle Scholar
42Toberer, E.S., Epping, J.-D.. Chmelka, B.F., Seshadri, R., Chem. Mater. 18, 6345 (2006).CrossRefGoogle Scholar
43Toberer, E.S., Grossman, M., Schladt, T., Lange, F.F., Seshadri, R., Chem. Mater. 19, 4833 (2007).CrossRefGoogle Scholar
44Shoemaker, D.P., Grossman, M., Seshadri, R., J. Phys.: Condens. Matter 20, 195219 (2008).Google Scholar