Hostname: page-component-797576ffbb-k7d4m Total loading time: 0 Render date: 2023-12-01T13:59:06.468Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Half-Heusler topological insulators

Published online by Cambridge University Press:  15 October 2014

Binghai Yan
Max Planck Institute for Chemical Physics of Solids, Germany;
Anne de Visser
Van der Waals-Zeeman Institute, Faculty of Science, University of Amsterdam, The Netherlands;
Get access


Ternary semiconducting or metallic half-Heusler compounds with an atomic composition 1:1:1 are widely studied for their flexible electronic properties and functionalities. Recently, a new material property of half-Heusler compounds was predicted based on electronic structure calculations: the topological insulator. In topological insulators, the metallic surface states are protected from impurity backscattering due to spin-momentum locking. This opens up new perspectives in engineering multifunctional materials. In this article, we introduce half-Heusler materials from the crystallographic and electronic structure point of view. We present an effective model Hamiltonian from which the topological state can be derived, notably from a non-trivial inverted band structure. We discuss general implications of the inverted band structure with a focus on the detection of the topological surface states in experiments by reviewing several exemplary materials. Special attention is given to superconducting half-Heusler materials, which have attracted ample attention as a platform for non-centrosymmetric and topological superconductivity.

Research Article
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Hasan, M.Z., Kane, C.L., Rev. Mod. Phys. 82, 3045 (2010).CrossRefGoogle Scholar
Qi, X.-L., Zhang, S.-C., Rev. Mod. Phys. 83, 1057 (2011).CrossRefGoogle Scholar
Moore, J.E., Nature 464, 194 (2010).CrossRefGoogle Scholar
Bernevig, B.A., Hughes, T.L., Zhang, S.C., Science 314, 1757 (2006).CrossRefGoogle Scholar
Koenig, M., Wiedmann, S., Bruene, C., Roth, A., Buhmann, H., Molenkamp, L., Qi, X.L., Zhang, S.C., Science 318, 766 (2007).CrossRefGoogle Scholar
Moore, J.E., Balents, L., Phys. Rev. B: Condens. Matter 75, 121306 (2007).CrossRefGoogle Scholar
Fu, L., Kane, C.L., Mele, E.J., Phys. Rev. Lett. 98, 106803 (2007).CrossRefGoogle Scholar
Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y.S., Cava, R.J., Hasan, M.Z., Nature 452, 970 (2008).CrossRefGoogle Scholar
Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C., Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., Hasan, M.Z., Nat. Phys. 5, 398 (2009).CrossRefGoogle Scholar
Taskin, A.A., Ren, Z., Sasaki, S., Segawa, K., Ando, Y., Phys. Rev. Lett. 107, 016801 (2011).CrossRefGoogle Scholar
Ando, Y., J. Phys. Soc. Jpn. 82, 102001 (2013).CrossRefGoogle Scholar
Heusler, F., Starck, W., Haupt, E., Verh. DPG 5, 220 (1903).Google Scholar
Graf, T., Felser, C., Parkin, S., Prog. Solid State Chem. 39, 1 (2011).CrossRefGoogle Scholar
Chadov, S., Qi, X.L., Kübler, J., Fecher, G.H., Felser, C., Zhang, S.C., Nat. Mater. 9, 541 (2010).CrossRefGoogle Scholar
Lin, H., Wray, L.A., Xia, Y., Xu, S., Jia, S., Cava, R.J., Bansil, A., Hasan, M.Z., Nat. Mater. 9, 546 (2010).CrossRefGoogle Scholar
Goll, G., Marz, M., Hamann, A., Tomanic, T., Grube, K., Yoshino, T., Takabatake, T., Physica B 403, 1065 (2008).CrossRefGoogle Scholar
Butch, N.P., Syers, P., Kirshenbaum, K., Hope, A.P., Paglione, J., Phys. Rev. B: Condens. Matter 84, 220504(R) (2011).CrossRefGoogle Scholar
Tafti, F., Fujii, T., Juneau-Fecteau, A., de Cotret, S.R., Doiron-Leyraud, N., Asamitsu, A., Taillefer, L., Phys. Rev. B: Condens. Matter 87, 184504 (2013).CrossRefGoogle Scholar
Pan, Y., Nikitin, A.M., Bay, T.V., Huang, Y.K., Paulsen, C., Yan, B.H., de Visser, A., Europhys. Lett. 104, 27001 (2013).CrossRefGoogle Scholar
Alicea, J., Rep. Prog. Phys. 75, 076501 (2012).CrossRefGoogle Scholar
Kuriyama, K., Kushida, K., J. Appl. Phys. 87, 3168 (2000).CrossRefGoogle Scholar
Rowe, D.M., Materials, Preparation, and Characterization in Thermoelectrics (CRC Press, Illustrations, USA, 2012), pp. 913.CrossRefGoogle Scholar
Dai, X., Hughes, T.L., Qi, X.-L., Fang, Z., Zhang, S.-C., Phys. Rev. B: Condens. Matter 77, 125319 (2008).CrossRefGoogle Scholar
Bruene, C., Liu, C.X., Novik, E.G., Hankiewicz, E.M., Buhmann, H., Chen, Y.L., Qi, X.L., Shen, Z.X., Zhang, S.C., Molenkamp, L.W., Phys. Rev. Lett. 106, 126803 (2011).CrossRefGoogle Scholar
Yan, B., Jansen, M., Felser, C., Nat. Phys. 9, 709 (2013).CrossRefGoogle Scholar
Yan, B., Müchler, L., Felser, C., Phys. Rev. Lett. 109, 116406 (2012).CrossRefGoogle Scholar
Fu, L., Kane, C.L., Phys. Rev. B: Condens. Matter 76, 045302 (2007).CrossRefGoogle Scholar
Xiao, D., Yao, Y., Feng, W., Wen, J., Zhu, W., Chen, X.Q., Stocks, G.M., Zhang, Z., Phys. Rev. Lett. 105, 096404 (2010).CrossRefGoogle Scholar
Al-Sawai, W., Lin, H., Markiewicz, R., Wray, L., Xia, Y., Xu, S.Y., Hasan, M., Bansil, A., Phys. Rev. B: Condens. Matter 82, 125208 (2010).CrossRefGoogle Scholar
Feng, W., Xiao, D., Zhang, Y., Yao, Y., Phys. Rev. B: Condens. Matter 82, 235121 (2010).CrossRefGoogle Scholar
Vidal, J., Zhang, X., Yu, L., Luo, J.W., Zunger, A., Phys. Rev. B: Condens. Matter 84, 041109 (2011).CrossRefGoogle Scholar
Wang, X.T., Dai, X.F., Jia, H.Y., Wang, L.Y., Liu, X.F., Cui, Y.T., Liu, G.D., Phys. Lett. A 378, 1662 (2014).CrossRefGoogle Scholar
Pyykkö, P., Annu. Rev. Phys. Chem. 63, 45 (2013).CrossRefGoogle Scholar
Roushan, P., Seo, J., Parker, C.V., Hor, Y.S., Hsieh, D., Qian, D., Richardella, A., Hasan, M.Z., Cava, R.J., Yazdani, A., Nature 460, 1106 (2009).CrossRefGoogle Scholar
Abrikosov, A.A., Europhys. Lett. 49, 789 (2000).CrossRefGoogle Scholar
Liu, C., Lee, Y., Kondo, T., Mun, E.D., Caudle, M., Harmon, B.N., Bud’ko, S.L., Canfield, P.C., Kaminski, A., Phys. Rev. B: Condens. Matter 83, 205133 (2011).CrossRefGoogle Scholar
Shekhar, C., Ouardi, S., Nayak, A.K., Fecher, G.H., Schnelle, W., Felser, C., Phys. Rev. B: Condens. Matter 86, 155314 (2012).CrossRefGoogle Scholar
Shekhar, C., Nicklas, M., Nayak, A.K., Ouardi, S., Schnelle, W., Fecher, G.H., Felser, C., Kobayashi, K., J. Appl. Phys. 113, 17E142 (2013).CrossRefGoogle Scholar
Wang, W., Du, Y., Xu, G., Zhang, X., Liu, E., Liu, Z., Shi, Y., Chen, J., Wu, G., Zhang, X.-X., Scientific Reports 3, 2181 (2013).CrossRefGoogle Scholar
Wosnitza, J., Goll, G., Bianchi, A.D., Bergk, B., Kozlova, N., Opahle, I., Elgazzar, S., Richter, M., Stockert, O., v Löhneysen, H., Yoshino, T., Takabatake, T., New J. Phys. 8, 174 (2006).CrossRefGoogle Scholar
Yan, B., Zhang, S.-C., Rep. Prog. Phys. 75, 096501 (2012).CrossRefGoogle Scholar
Chu, R.-L., Shan, W.-Y., Lu, J., Shen, S.-Q., Phys. Rev. B: Condens. Matter 83, 075110 (2011).CrossRefGoogle Scholar
Wu, S.-C., Yan, B., Felser, C., e-print arXiv:1404.6085 (2014).Google Scholar
Virot, F., Hayn, R., Richter, M., van den Brink, J., Phys. Rev. Lett. 111, 146803 (2013).CrossRefGoogle Scholar
Yao, S.H., Zhou, B., Lu, M.H., Liu, Z.K., Chen, Y.B., Analytis, J.G., Brüne, C., Dang, W.H., Mo, S.-K., Shen, Z.X., Fisher, I.R., Molenkamp, L.W., Peng, H.L., Hussain, Z., Chen, Y.L., Phys. Status Solidi RRL 7, 130 (2013).CrossRefGoogle Scholar
Sato, M., Phys. Rev. B: Condens. Matter 79, 214526 (2009).CrossRefGoogle Scholar
Hor, Y.S., Williams, A.J., Checkelsky, J.G., Roushan, P., Seo, J., Xu, Q., Zandbergen, H.W., Yazdani, A., Ong, N.P., Cava, R.J., Phys. Rev. Lett. 104, 057001 (2010).CrossRefGoogle Scholar
Sasaki, S., Ren, Z., Taskin, A.A, Segawa, K., Fu, L., Ando, Y., Phys. Rev. Lett. 109, 217004 (2012).CrossRefGoogle Scholar
Bay, T.V., Jackson, M., Paulsen, C., Baines, C., Amato, A., Orvis, T., Aronson, M.C., Huang, Y.K., de Visser, A., Solid State Commun. 183, 13 (2014).CrossRefGoogle Scholar
Werthamer, N.R., Helfand, E., Hohenberg, P.C., Phys. Rev. 147, 295 (1966).CrossRefGoogle Scholar
Bay, T.V., Naka, T., Huang, Y.K., de Visser, A., Phys. Rev. B: Condens. Matter 86, 064515 (2012).CrossRefGoogle Scholar
Scharnberg, K., Klemm, R.A., Phys. Rev. B: Condens. Matter 22, 5233 (1980).CrossRefGoogle Scholar
Bauer, E., Sigrist, M., Eds., Non Centrosymmetric Superconductors (Lecture Notes in Physics), vol.847 (Springer, Berlin, 2012).CrossRefGoogle Scholar
Goraus, J., Ślebarski, A., Fijałkowski, M., J. Phys. Condens. Matter 25, 176002 (2013).CrossRefGoogle Scholar
Xu, G., Wang, W., Zhang, X., Du, Y., Liu, E., Wang, S., Wu, G., Liu, Z., Zhang, X.X., Scientific Reports 4, 5709 (2014).CrossRefGoogle Scholar