Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-2rjgt Total loading time: 0.415 Render date: 2022-12-10T08:29:13.020Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Glass-ceramics for nuclear-waste immobilization

Published online by Cambridge University Press:  06 March 2017

John S. McCloy
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, USA; john.mccloy@wsu.edu
Ashutosh Goel
Affiliation:
Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, USA; ag1179@soe.rutgers.edu
Get access

Abstract

Crystallization in glasses is usually considered to be a problem in the glass industry. However, controlled crystallization of glasses is an important prerequisite in the development of glass-ceramics with tailored useful properties. Similar boundary conditions apply when considering glass-ceramics for the immobilization of nuclear waste via vitrification. While uncontrolled crystallization in nuclear-waste glasses is problematic, chemically durable glass-ceramics with significantly high waste loadings can be produced with controlled crystallization of glasses. This article presents an overview of various aspects of nuclear-waste glasses where crystallization is either considered to be advantageous or problematic. The classification of glass-ceramic waste forms and strategies to design glass-ceramics for a given waste stream is discussed. Some open and relevant problems faced by researchers developing nuclear-waste glass-ceramics are also offered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, W.E., Ojovan, M.I., Jantzen, C.M., Eds., Radioactive Waste Management and Contaminated Site Clean-Up: Processes, Technologies and International Experience (Woodhead Publishing, Oxford, UK, 2013).CrossRefGoogle Scholar
Donald, I.W., Metcalfe, B.L., Taylor, R.N.J., J. Mater. Sci. 32, 5851 (1997).CrossRef
Ojovan, M.I., Lee, W.E., An Introduction to Nuclear Waste Immobilisation (Elsevier, Amsterdam, The Netherlands, 2005).Google Scholar
Donald, I.W., Waste Immobilization in Glass and Ceramic Based Hosts: Radioactive, Toxic, and Hazardous Wastes (Wiley, Chichester, UK, 2010).CrossRefGoogle Scholar
Caurant, D., Loiseau, P., Majerus, O., Aubin-Chevaldonnet, V., Bardez, I., Quintas, A., Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes (Nova Science, New York, 2009).Google Scholar
Weber, W.J., Ewing, R.C., Catlow, C.R.A., de la Rubia, T.D., Hobbs, L.W., Kinoshita, C., Matzke, H., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).CrossRef
De, A.K., Luckscheiter, B., Lutze, W., Malow, G., Schiewer, E., Am. Ceram. Soc. Bull. 55, 500 (1976).
Höland, W., Beall, G.H., Glass Ceramic Technology, 2nd ed. (Wiley, Hoboken, NJ, 2012).CrossRefGoogle Scholar
National Research Council, Committee on Waste Forms Technology and Performance, Waste Forms Technology and Performance: Final Report (National Academy of Sciences, Washington, DC, 2011).
Ojovan, M., Lee, W., Metall. Mater. Trans. A 42, 837 (2011).CrossRef
Hrma, P., J. Non Cryst. Solids 356, 3019 (2010).CrossRef
Kim, D.S., Peeler, D.K., Hrma, P., Ceram. Trans. 61, Jain, V., Palmer, R., Eds. (American Ceramic Society, Westerville, OH, 1995), p. 177.Google Scholar
Loiseau, P., Caurant, D., Baffier, N., Mazerolles, L., Fillet, C., J. Nucl. Mater. 335, 14 (2004).CrossRef
Lee, W.E., Ojovan, M.I., Stennett, M.C., Hyatt, N.C., Adv. Appl. Ceram. 105, 3 (2006).CrossRef
Boccaccini, A.R., Bernardo, E., Blain, L., Boccaccini, D.N., J. Nucl. Mater. 327, 148 (2004).CrossRef
Hayward, J.P., in Radioactive Waste Forms for the Future, Lutze, W., Ewing, R.C., Eds. (North-Holland, Amsterdam, 1988), p. 427.Google Scholar
Lutze, W., Borchardt, J., De, A.K., “Characterization of Glass and Glass Ceramic Nuclear Waste Forms,” Mater. Res. Symp. Proc. 1, McCarthy, G.J., Schwoebel, R.L., Potter, R.W. II, Friedman, A.M., Moore, J.G., Burkholder, H.C., Lutze, W., Eds. (Materials Research Society, Warrendale, PA, 1979), p. 69.Google Scholar
Crum, J.V., Turo, L., Riley, B., Tang, M., Kossoy, A., J. Am. Ceram. Soc. 95, 1297 (2012).CrossRef
Maddrell, E., Thornber, S., Hyatt, N.C., J. Nucl. Mater. 456, 461 (2015).CrossRef
Ebert, W.L., Snyder, C.T., Riley, B.J., Frank, S.M., “Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste” (Report No. FCRD-MRWFD-2016-000038, Argonne National Laboratory, Argonne, IL, 2016).
Lumpkin, G.R., Elements 2, 365 (2006).CrossRef
Zhang, Y., Zhang, Z., Thorogood, G., Vance, E.R., J. Nucl. Mater. 432, 545 (2013).CrossRef
Pinet, O., Grandjean, A., Frugier, P., Rabiller, H., Poissonnet, S., J. Non Cryst. Solids 352, 3095 (2006).CrossRef
Caurant, D., Majérus, O., Fadel, E., Quintas, A., Gervais, C., Charpentier, T., Neuville, D., J. Nucl. Mater. 396, 94 (2010).CrossRef
Crum, J., Maio, V., McCloy, J., Scott, C., Riley, B., Benefiel, B., Vienna, J., Archibald, K., Rodriguez, C., Rutledge, V., Zhu, Z., Ryan, J., Olszta, M., J. Nucl. Mater. 444, 481 (2014).CrossRef
Schuller, S., Pinet, O., Penelon, B., J. Am. Ceram. Soc. 94, 447 (2011).CrossRef
Schuller, S., Pinet, O., Grandjean, A., Blisson, T., J. Non Cryst. Solids 354, 296 (2008).CrossRef
Magnin, M., Schuller, S., Mercier, C., Trébosc, J., Caurant, D., Majérus, O., Angéli, F., Charpentier, T., J. Am. Ceram. Soc. 94, 4274 (2011).CrossRef
Riley, B.J., Crum, J.V., Matyáš, J., McCloy, J.S., Lepry, W.C., J. Am. Ceram. Soc. 95, 3115 (2012).CrossRef
Lemesle, T., Méar, F.O., Campayo, L., Pinet, O., Revel, B., Montagne, L., J. Hazard. Mater. 264, 117 (2014).CrossRef
Riley, B.J., Rieck, B.T., McCloy, J.S., Crum, J.V., Sundaram, S.K., Vienna, J.D., J. Nucl. Mater. 424, 29 (2012).CrossRef
Bateman, K.J., Knight, C.J., Solbrig, C.W., “Current Status of Ceramic Waste Form Development” (Report INL/INT-06-11736, Rev. 1, Idaho National Laboratory, Idaho Falls, ID, 2007).
Vance, E.R., Davis, J., Olufson, K., Chironi, I., Karatchevtseva, I., Farnan, I., J. Nucl. Mater. 420, 396 (2012).CrossRef
Chouard, N., Caurant, D., Majérus, O., Dussossoy, J.L., Ledieu, A., Peuget, S., Baddour-Hadjean, R., Pereira-Ramos, J.P., J. Non Cryst. Solids 357, 2752 (2011).CrossRef
Chouard, N., Caurant, D., Majérus, O., Guezi-Hasni, N., Dussossoy, J.-L., Baddour-Hadjean, R., Pereira-Ramos, J.-P., J. Alloys Compd. 671, 84 (2016).CrossRef
Zanotto, E.D., Int. J. Appl. Glass Sci. 4, 105 (2013).CrossRef
Hill, R., Calver, A., Stamboulis, A., Bubb, N., J. Am. Ceram. Soc. 90, 763 (2007).CrossRef
Fernandez-Martin, C., Bruno, G., Crochet, A., Ovono Ovono, D., Comte, M., Hennet, L., J. Am. Ceram. Soc. 95, 1304 (2012).CrossRef
Bocker, C., Rüssel, C., Avramov, I., Chem. Phys. 406, 50 (2012).CrossRef
McCloy, J.S., Schweiger, M.J., Rodriguez, C.P., Vienna, J.D., Int. J. Appl. Glass Sci. 2, 201 (2011).CrossRef
Trocellier, P., Ann. Chimie Sci. Materiaux. 26, 113 (2001).CrossRef
Gin, S., Abdelouas, A., Criscenti, L.J., Ebert, W.L., Ferrand, K., Geisler, T., Harrison, M.T., Inagaki, Y., Mitsui, S., Mueller, K.T., Marra, J.C., Pantano, C.G., Pierce, E.M., Ryan, J.V., Schofield, J.M., Steefel, C.I., Vienna, J.D., Mater. Today 16, 243 (2013).CrossRef
Li, H., Vienna, J.D., Hrma, P., Smith, D.E., Schweiger, M.J., Mater. Res. Soc. Symp. Proc. 465, Gray, W.J., Triay, I.R., Eds. (Materials Research Society, Warrendale, PA, 1997), p. 261.Google Scholar
Vienna, J.D., Ryan, J.V., Gin, S., Inagaki, Y., Int. J. Appl. Glass Sci. 4, 283 (2013).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Glass-ceramics for nuclear-waste immobilization
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Glass-ceramics for nuclear-waste immobilization
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Glass-ceramics for nuclear-waste immobilization
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *