Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-ls6xp Total loading time: 0.32 Render date: 2022-11-29T18:49:05.037Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Article contents

Epitaxial graphene on silicon carbide: Introduction to structured graphene

Published online by Cambridge University Press:  23 November 2012

Ming Ruan
Affiliation:
Georgia Institute of Technology; ruan@gatech.edu
Yike Hu
Affiliation:
Georgia Institute of Technology; yhu9@mail.gatech.edu
Zelei Guo
Affiliation:
Georgia Institute of Technology; zguo34@gatech.edu
Rui Dong
Affiliation:
Georgia Institute of Technology; rui.dong@physics.gatech.edu
James Palmer
Affiliation:
Georgia Institute of Technology; jimbopalmer@gatech.edu
John Hankinson
Affiliation:
Georgia Institute of Technology; jhankinson@gatech.edu
Claire Berger
Affiliation:
Georgia Institute of Technology, USA, and CNRS/Institut Néel, France; claire.berger@physics.gatech.edu
Walt A. de Heer
Affiliation:
Georgia Institute of Technology; walter.deheer@physics.gatech.edu
Get access

Abstract

We present an introduction to the rapidly growing field of epitaxial graphene on silicon carbide, tracing its development from the original proof-of-concept experiments a decade ago to its present, highly evolved state. The potential of epitaxial graphene as a new electronic material is now being recognized. Whether the ultimate promise of graphene-based electronics will ever be realized remains an open question. Silicon electronics is based on single-crystal substrates that allow reliable patterning on the nanoscale, which is an absolute requirement for any new electronic material. That is why epitaxial graphene is based on single-crystal silicon carbide. We also present recent results on nanopatterned graphene produced by etching the silicon carbide before annealing so that the graphene structures are produced in their final shapes. This avoids postannealing patterning, which is known to greatly affect transport properties on the nanoscale. Creating such structured graphene is an elegant method for avoiding pervasive patterning problems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chung, D.D.L., J. Mater. Sci. 37, 1475 (2002).CrossRef
Fitzer, E., Manocha, L.M., Carbon Reinforcements and Carbon/Carbon Composites (Springer, Berlin, 1998).CrossRefGoogle Scholar
Thostenson, E.T., Ren, Z., Chou, T.-W., Compos. Sci. Technol. 61, 1899 (2001).CrossRef
Pauling, L.C., The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell University Press, Ithaca, NY, 1948).Google Scholar
Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U., Z. Naturforsch. B: Chem. Sci. B17, 150 (1962).
Allen, M.J., Tung, V.C., Kaner, R.B., Chem. Rev. 110, 132 (2009).CrossRef
Katsnelson, M.I., Mater. Today 10, 20 (2007).CrossRef
Wallace, P.R., Phys. Rev. 71, 622 (1947).CrossRef
Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., ConradE,H. E,H., First, P.N., de Heer, W.A., J. Phys. Chem. B 108, 19912 (2004).CrossRef
Hu, Y.K., Ruan, M., Guo, Z.L., Dong, R., Palmer, J., Hankinson, J., Berger, C., de Heer, W.A., J. Phys. D: Appl. Phys. 45, 154010 (2012).CrossRef
Kim, K., Choi, J.Y., Kim, T., Cho, S.H., Chung, H.J., Nature 479, 338 (2011).CrossRef
Sprinkle, M., Ruan, M., Hu, Y., Hankinson, J., Rubio-Roy, M., Zhang, B., Wu, X., Berger, C., de Heer, W.A., Nat. Nanotechnol. 5, 727 (2010).CrossRef
de Heer, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G., Solid State Commun. 143, 92 (2007).CrossRef
Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B 54, 17954 (1996).CrossRef
White, C.T., Mintmire, J.W., J. Phys. Chem. B 109, 52 (2005).CrossRef
Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C., Science 294, 1317 (2001).CrossRef
de Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., Conrad, E.H., Proc. Natl. Acad. Sci. U.S.A. 108, 16900 (2011).CrossRef
First, P.N., de Heer, W.A., Seyller, T., Berger, C., Stroscio, J.A., Moon, J.-S., MRS Bull. 35, 296 (2010).CrossRef
Kedzierski, J., Hsu, P.-L., Healey, P., Wyatt, P.W., Keast, C.L., Sprinkle, M., Berger, C., de Heer, W.A., IEEE Trans. Electron Devices 55, 2078 (2008).CrossRef
Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Rohrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T., Nat. Mater. 8, 203 (2009).CrossRef
Hass, J., Feng, R., Li, T., Li, X., Zong, Z., de Heer, W.A., First, P.N., Conrad, E.H., Jeffrey, C.A., Berger, C., Appl. Phys. Lett. 89, 143106 (2006).CrossRef
Niyogi, S., Bekyarova, E., Hong, J., Khizroev, S., Berger, C., de Heer, W.A., Haddon, R.C., J. Phys. Chem. Lett. 2, 2487 (2011).CrossRef
Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A.A., Starke, U., Phys. Rev. Lett. 103, 246804 (2009).CrossRef
Seyller, T., Bostwick, A., Emtsev, K.V., Horn, K., Ley, L., McChesney, J.L., Ohta, T., Riley, J.D., Rotenberg, E., Speck, F., Phys. Status Solidi B 245, 1436 (2008).CrossRef
Forbeaux, I., Themlin, J.M., Debever, J.M., Phys. Rev. B 58, 16396 (1998).CrossRef
Van Bommel, A.J., Crombeen, J.E., Van Tooren, A., Surf. Sci. 48, 463 (1975).CrossRef
de Heer, W.A., MRS Bull. 36, 632 (2011).CrossRef
Sprinkle, M., Soukiassian, P., de Heer, W.A., Berger, C., Conrad, E.H., Phys. Status Solidi RRL 3, A91 (2009).CrossRef
Emtsev, K.V., Speck, F., Seyller, T., Ley, L., Riley, J.D., Phys. Rev. B 77, 155303 (2008).CrossRef
Lauffer, P., Emtsev, K.V., Graupner, R., Seyller, T., Ley, L., Reshanov, S.A., Weber, H.B., Phys. Rev. B 77, 155426 (2008).CrossRef
Varchon, F., Feng, R., Hass, J., Li, X., Ngoc Nguyen, B., Naud, C., Mallet, P., Veuillen, J.-Y., Berger, C., Conrad, E.H., Magaud, L., Phys. Rev. Lett. 99, 126805 (2007).CrossRef
Berger, C., Song, Z.M., Li, X.B., Wu, X.S., Brown, N., Naud, C., Mayou, D., Li, T.B., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., Science 312, 1191 (2006).CrossRef
Hass, J., de Heer, W.A., Conrad, E.H., J. Phys.: Condens. Matter 20, 323202 (2008).
Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Vizzini, S., Enriquez, H., Chiang, S., Soukiassian, P., Berger, C., de Heer, W.A., Lanzara, A., Conrad, E.H., Phys. Rev. Lett. 103, 226803 (2009).CrossRef
Hicks, J., Sprinkle, M., Shepperd, K., Wang, F., Tejeda, A., Taleb-Ibrahimi, A., Bertran, F., Le Fèvre, P., de Heer, W.A., Berger, C., Conrad, E.H., Phys. Rev. B 83, 205403 (2011).CrossRef
Orlita, M., Faugeras, C., Plochocka, P., Neugebauer, P., Martinez, G., Maude, D.K., Barra, A.L., Sprinkle, M., Berger, C., de Heer, W.A., Potemski, M., Phys. Rev. Lett. 101, 267601 (2008).CrossRef
Sadowski, M.L., Martinez, G., Potemski, M., Berger, C., de Heer, W.A., Phys. Rev. Lett. 97, 266405 (2006).CrossRef
Faugeras, C., Nerriere, A., Potemski, M., Mahmood, A., Dujardin, E., Berger, C., de Heer, W.A., Appl. Phys. Lett. 92, 011914 (2008).CrossRef
Sun, D., Divin, C., Rioux, J., Sipe, J.E., Berger, C., de Heer, W.A., First, P.N., Norris, T.B., Nano Lett. 10, 1293 (2010).CrossRef
Sun, D., Divin, C., Berger, C., de Heer, W.A., First, P.N., Norris, T.B., Phys. Rev. Lett. 104, 136802 (2010).CrossRef
Sun, D., Wu, Z.-K., Divin, C., Li, X.B., Berger, C., de Heer, W.A., First, P.N., Norris, T.B., Phys. Rev. Lett. 101, 157402 (2008).CrossRef
Winnerl, S., Orlita, M., Plochocka, P., Kossacki, P., Potemski, M., Winzer, T., Malic, E., Knorr, A., Sprinkle, M., Berger, C., de Heer, W.A., Schneider, H., Helm, M., Phys. Rev. Lett. 107, 237401 (2011).CrossRef
Miller, D.L., Kubista, K.D., Rutter, G.M., Ruan, M., de Heer, W.A., First, P.N., Stroscio, J.A., Science 324, 924 (2009).CrossRefPubMed
Miller, D.L., Kubista, K.D., Rutter, G.M., Ruan, M., de Heer, W.A., Kindermann, M., First, P.N., Stroscio, J.A., Nat. Phys. 6, 811 (2010).CrossRef
Song, Y.J., Otte, A.F., Kuk, Y., Hu, Y.K., Torrance, D.B., First, P.N., de Heer, W.A., Min, H.K., Adam, S., Stiles, M.D., MacDonald, A.H., Stroscio, J.A., Nature 467, 185 (2010).CrossRef
Wu, X.S., Sprinkle, M., Li, X.B., Ming, F., Berger, C., de Heer, W.A., Phys. Rev. Lett. 101, 026801 (2008).CrossRef
Bekyarova, E., Itkis, M.E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W.A., Haddon, R.C., J. Am. Chem. Soc. 131, 1336 (2009).CrossRef
Wei, Z., Wang, D., Kim, S., Kim, S.Y., Hu, Y., Yakes, M.K., Laracuente, A.R., Dai, Z., Marder, S.R., Berger, C., King, W.P., de Heer, W.A., Sheehan, P.E., Riedo, E., Science 328, 1373 (2010).CrossRef
Kim, S., Zhou, S., Hu, Y.K., Acik, M., Chabal, Y.J., Berger, C., de Heer, W.A., Bongiorno, A., Riedo, E., Nat. Mater. 11, 544 (2012).CrossRef
Kodali, V.K., Scrimgeour, J., Kim, S., Hankinson, J.H., Carroll, K.M., de Heer, W.A., Berger, C., Curtis, J.E., Langmuir 27, 863 (2011).CrossRef
Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P., Nature 438, 201 (2005).CrossRef
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., Nature 438, 197 (2005).CrossRef
Wu, X.S., Hu, Y.K., Ruan, M., Madiomanana, N.K., Hankinson, J., Sprinkle, M., Berger, C., de Heer, W.A., Appl. Phys. Lett. 95, 223108 (2009).CrossRef
de Heer, W.A., Berger, C., Wu, X., Hu, Y., Ruan, M., Stroscio, J., First, P., Haddon, R., Piot, B., Faugeras, C., Potemski, M., J. Phys. D: Appl. Phys. 43, 374007 (2010).CrossRef
Moon, J.S., Curtis, D., Hu, M., Wong, D., McGuire, C., Campbell, P.M., Jernigan, G., Tedesco, J.L., VanMil, B., Myers-Ward, R., Eddy, C.J., Gaskill, D.K., IEEE Electron Device Lett. 30, 650 (2009).CrossRef
Lin, Y.-M., Valdes-Garcia, A., Han, S.-J., Farmer, D.B., Meric, I., Sun, Y.N., Wu, Y.Q., Dimitrakopoulos, C., Grill, A., Avouris, Ph., Jenkins, K.A., Science 332, 1294 (2011).CrossRef
Lin, Y.-M., Farmer, D.B., Jenkins, K.A., Wu, Y., Tedesco, J.L., Myers-Ward, R.L., Eddy, C.R. Jr., Gaskill, D.K., Dimitrakopoulos, C., Avouris, P., IEEE Electron Device Lett. 32, 1343 (2011).CrossRef
Krithivasan, R., Lu, Y., Cressler, J.D., Rieh, J.S., Khater, M.H., Ahlgren, D., Freeman, G., IEEE Electron Device Lett. 27, 567 (2006).CrossRef
Nienhaus, H., Kampen, T.U., Monch, W., Surf. Sci. 324, L328 (1995).CrossRef
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M., Science 294, 1488 (2001).CrossRef
Dlubak, B., Martin, M.-B., Deranlot, C., Servet, B., Xavier, S., Mattana, R., Sprinkle, M., Berger, C., de Heer, W.A., Petroff, F., Anane, A., Seneor, P., Fert, A., Nat. Phys. 8, 557 (2012).CrossRef
Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P., Phys. Rev. Lett. 98, 206805 (2007).CrossRef
Oostinga, J.B., Sacepe, B., Craciun, M.F., Morpurgo, A.F., Phys. Rev. B 81, 193408 (2010).CrossRef
Rubio-Roy, M., Zaman, F., Hu, Y.K., Berger, C., Moseley, M.W., Meindl, J.D., de Heer, W.A., Appl. Phys. Lett. 96, 082112 (2010).CrossRef
Hicks, J., Shepperd, K., Wang, F., Conrad, E.H., J. Phys. D: Appl. Phys. 45, 154002 (2012).CrossRef
Powell, J.A., Neudeck, P.G., Trunek, A.J., Beheim, G.M., Matus, L.G., Hoffman, R.W., Keys, L.J., Appl. Phys. Lett. 77, 1449 (2000).CrossRef
Norimatsu, W., Kusunoki, M., Physica E 42, 691 (2010).CrossRef
Özyilmaz, B., Jarillo-Herrero, P., Efetov, D., Kim, P., Appl. Phys. Lett. 91, 192107 (2007).CrossRef
Son, Y.-W., Cohen, M.L., Louie, S.G., Phys. Rev. Lett. 97, 216803 (2006).CrossRef
Hassan, R., J. Phys.: Condens. Matter 23, 382203 (2011).

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Epitaxial graphene on silicon carbide: Introduction to structured graphene
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Epitaxial graphene on silicon carbide: Introduction to structured graphene
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Epitaxial graphene on silicon carbide: Introduction to structured graphene
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *