Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-9lvz7 Total loading time: 0.33 Render date: 2021-09-26T07:56:29.084Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Dual-stimulus magnetoelectric energy harvesting

Published online by Cambridge University Press:  09 March 2018

Zhaoqiang Chu
Affiliation:
Department of Materials Science and Engineering, Peking University, China; zhaoqiangchu@pku.edu.cn
Venkateswarlu Annapureddy
Affiliation:
CSIR-National Physical Laboratory, India; reddydph@gmail.com
MohammadJavad PourhosseiniAsl
Affiliation:
Department of Materials Science and Engineering, Peking University, China; pourhosseini@pku.edu.cn
Haribabu Palneedi
Affiliation:
Korea Institute of Materials Science, South Korea; harry.mse@kaist.ac.kr
Jungho Ryu
Affiliation:
School of Materials Science and Engineering, Yeungnam University, South Korea; puggy96@hanmail.net
Shuxiang Dong
Affiliation:
Department of Materials Science and Engineering, Peking University, China; sxdong@pku.edu.cn
Get access

Abstract

Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well.

Type
Materials for Energy Harvesting
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beeby, S.P., Tudor, M.J., White, N.M., Meas. Sci. Technol. 17, R175 (2006).CrossRefGoogle Scholar
Priya, S., J. Electroceram. 19, 165 (2007).Google Scholar
Harne, R.L., Wang, K.W., Smart Mater. Struct. 22, 023001 (2013).CrossRefGoogle Scholar
Shaikh, F.K., Zeadally, S., Renew. Sustain. Energy Rev. 55, 1041 (2016).CrossRefGoogle Scholar
Tan, Y.K., Panda, S.K., IEEE Trans. Ind. Electron. 58, 4424 (2011).CrossRefGoogle Scholar
Hu, Y., Xu, Y., Appl. Phys. Lett. 104, 053902 (2014).CrossRefGoogle Scholar
Anton, S.R., Sodano, H.A., Smart Mater. Struct. 16, R1 (2007).CrossRefGoogle Scholar
Zhu, D., Tudor, M.J., Beeby, S.P., Meas. Sci. Technol. 21, 022001 (2010).CrossRefGoogle Scholar
Wu, J., Shi, H., Zhao, T., Yu, Y., Dong, S., Adv. Funct. Mater. 26, 7186 (2016).CrossRefGoogle Scholar
Yeo, H.G., Ma, X., Rahn, C., Trolier-McKinstry, S., Adv. Funct. Mater. 26, 5940 (2016).CrossRefGoogle Scholar
Eom, C.-B., Trolier-McKinstry, S., MRS Bull. 37, 1007 (2012).CrossRefGoogle Scholar
Chu, Z., Shi, H., PourhosseiniAsl, M., Wu, J., Shi, W., Gao, X., Yuan, X., Dong, S., Sci. Rep. 7, 8592 (2017).CrossRefGoogle Scholar
Chu, Z., Shi, H., Shi, W., Liu, G., Wu, J., Yang, J., Dong, S., Adv. Mater. 29, 1606022 (2017).CrossRefGoogle Scholar
Erturk, A., Hoffmann, J., Inman, D.J., Appl. Phys. Lett. 94, 254102 (2009).CrossRefGoogle Scholar
Manna, B.P., Simsb, N.D., J. Sound Vib. 319, 515 (2009).CrossRefGoogle Scholar
Liu, G., Ci, P., Dong, S., Appl. Phys. Lett. 104, 032908 (2014).CrossRefGoogle Scholar
Ryu, J., Kang, J.-E., Zhou, Y., Choi, S.-Y., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., Kim, Y.-D., Priya, S., Lee, S.Y., Jeong, S., Jeong, D.-Y., Energy Environ. Sci. 8, 2402 (2015).CrossRefGoogle Scholar
Khaligh, A., Zeng, P., Zheng, C., IEEE Trans. Ind. Electron. 57, 850 (2010).CrossRefGoogle Scholar
Li, P., Wen, Y., Chaobo, J., Xinshen, L., IEEE Trans. Ind. Electron. 58, 2944 (2011).CrossRefGoogle Scholar
Dong, S., Zhai, J., Li, J.F., Viehland, D., Priya, S., Appl. Phys. Lett. 93, 103511 (2008).CrossRefGoogle Scholar
Zhai, J., Xing, Z., Dong, S., Li, J., Viehland, D., J. Am. Ceram. Soc. 91, 351 (2008).CrossRefGoogle Scholar
Madelung, O., Rössler, U., Schulz, M., Eds., Group IV Elements, IV-IV and III-V Compounds, Part B—Electronic, Transport, Optical and Other Properties, Semiconductors (Springer, Berlin, 2001).Google Scholar
Tumanski, S., Handbook of Magnetic Measurements (CRC Press, Boca Raton, FL, 2011).CrossRefGoogle Scholar
Dong, S., Li, J., Viehland, D., J. Appl. Phys. 95, 5 (2004).Google Scholar
Lou, J., Liu, M., Reed, D., Ren, Y., Sun, N.X., Adv. Mater. 21, 4711 (2009).CrossRefGoogle Scholar
Zhou, Y., Apo, D.J., Priya, S., Appl. Phys. Lett. 103, 192909 (2013).CrossRefGoogle Scholar
Zhou, Y., Apo, D.J., Sanghadasa, M., Bichurin, M., Petrov, V.M., Priya, S., “Magnetoelectric Energy Harvester,” in Composite Magnetoelectrics, Srinivasan, G., Priya, S., Sun, N.X., Eds. (Woodhead Publishing, Cambridge, UK, 2015), chap. 7, pp. 161207.CrossRefGoogle Scholar
Kim, S.-G., Priya, S., Kanno, I., MRS Bull. 37, 1039 (2012).CrossRefGoogle Scholar
Lin, J.T., Lee, B., Alphenaar, B., Smart Mater. Struct. 19, 045012 (2010).CrossRefGoogle Scholar
Hajati, A., Kim, S.G., Appl. Phys. Lett. 99, 083105 (2011).CrossRefGoogle Scholar
Marinkovic, B., Kosera, H., Appl. Phys. Lett. 94, 103505 (2009).CrossRefGoogle Scholar
Yang, J., Wen, Y., Li, P., Dai, X., Sens. Actuators A Phys. 168, 358 (2011).CrossRefGoogle Scholar
Li, M., Wen, Y., Li, P., Yang, J., Dai, X., Sens. Actuators A Phys. 166, 102 (2011).CrossRefGoogle Scholar
Bai, X., Wen, Y., Yang, J., Li, P., Qiu, J., Zhu, Y., J. Appl. Phys. 111, 07A938 (2012).Google Scholar
Yang, J., Wen, Y., Li, P., Yue, X., Yu, Q., Bai, X., Appl. Phys. Lett. 103, 243903 (2013).CrossRefGoogle Scholar
Lin, Z., Chen, J., Li, X., Li, J., Liu, J., Awais, Q., Yang, J., Appl. Phys. Lett. 109, 253903 (2016).CrossRefGoogle Scholar
Kambale, R.C., Kang, J.-E., Yoon, W.-H., Park, D.-S., Choi, J.-J., Ahn, C.-W., Kim, J.-W., Hahn, B.-D., Jeong, D.-Y., Kim, Y.-D., Dong, S., Ryu, J., Energy Harvest. Syst. 1, 3 (2014).Google Scholar
Patil, D.R., Zhou, Y., Kang, J.-E., Sharpes, N., Jeong, D.-Y., Kim, Y.-D., Kim, K.H., Priya, S., Ryu, J., APL Mater. 2, 46102 (2014).CrossRefGoogle Scholar
Kambale, R.C., Yoon, W.-H., Park, D.-S., Choi, J.-J., Ahn, C.-W., Kim, J.-W., Hahn, B.-D., Jeong, D.-Y., Lee, B.C., Chung, G.-S., Ryu, J., J. Appl. Phys. 113, 204108 (2013).CrossRefGoogle Scholar
Gupta, R., Tomar, M., Rammohan, S., Katiyar, R.S., Gupta, V., Appl. Phys. Lett. 109, 193901 (2016).CrossRefGoogle Scholar
Supplementary material: PDF

Chu et al. supplementary material 1

Supplementary Table

Download Chu et al. supplementary material 1(PDF)
PDF 67 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dual-stimulus magnetoelectric energy harvesting
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dual-stimulus magnetoelectric energy harvesting
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dual-stimulus magnetoelectric energy harvesting
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *