Hostname: page-component-758b78586c-9l7gn Total loading time: 0 Render date: 2023-11-29T23:28:29.726Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrates by HVPE

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The remarkable progress in nonpolar and semipolar devices based on gallium nitride (GaN) in recent years has been driven by not only advancements in the epitaxial growth technique but also improvements in the quality of bulk nonpolar and semipolar GaN substrates. At present, high-quality nonpolar/semipolar substrates are only made by slicing thick bulk GaN crystals grown by hydride vapor-phase epitaxy (HVPE). Although HVPE is currently the most successful method for obtaining high-quality bulk GaN crystals, it is still difficult to obtain uniform crystals with large diameters and thicknesses. The size of the nonpolar/semipolar substrates has been limited by the growth thickness along the c-axis of bulk GaN crystals. Here we review the growth of bulk GaN crystals by HVPE to achieve high-quality and large-sized nonpolar and semipolar substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Oshima, Y., Yoshida, T., Eri, T., Shibata, M., Mishima, T., Phys. Status Solidi C 4, 2215 (2007).Google Scholar
2Shibata, H., Waseda, Y., Ohta, H., Kiyomi, K., Shimoyma, K., Fujito, K., Nagaoka, H., Kagamitani, Y., Simura, R., Fukuda, T., Mater. Trans. 48, 2782 (2007).Google Scholar
3Maruska, H.P., Tietjen, J.J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
4Motoki, K., Okahisa, T., Matsumoto, N., Matsushita, M., Kimura, H., Kasai, H., Takemoto, K., Uematsu, K., Hirano, T., Nakayama, M., Nakahata, S., Ueno, M., Hara, D., Kumagai, Y., Koukitsu, A., Seki, H., Jpn. J. Appl. Phys. 40, L140 (2001).Google Scholar
5Fujito, K., Kubo, S., Nagaoka, H., Mochizuki, T., Namita, H., Nagao, S., J. Cryst. Growth (2009), doi: 10.1016/j.jcrysgro.2009. 01.046.Google Scholar
6Kumagai, Y., Koukitsu, A., Seki, H., Jpn. J. Appl. Phys. 39, L149 (2000).Google Scholar
7Wakahara, A., Yamamoto, T., Ishio, K., Yoshida, A., Seki, Y., Kainosho, K., Oda, O., Jpn. J. Appl. Phys. 39, 2399 (2000).Google Scholar
8Kryliouk, O., Reed, M., Dann, T., Anderson, T., Chai, B., Mater. Sci. Eng. B 66, 26 (1999).Google Scholar
9Melnik, Yu., Nikolaev, A., Nikitina, I., Vassilevski, K., Dmitriev, V., Mater. Res. Soc. Symp. Proc. 482, 269 (1998).Google Scholar
10Kim, S.T., Lee, Y.J., Chung, S.H., Moon, D.C., J. Korean Phys. Soc. 33, S313 (1998).Google Scholar
11Kelly, M.K., Ambacher, O., Dimitrov, R., Handschuh, R., Stutzmann, M., Phys. Status Solidi A 159, R3 (1997).Google Scholar
12Park, S.S., Park, I., Choh, S.H., Jpn. J. Appl. Phys. 39, L1141 (2000).Google Scholar
13Oshima, Y., Eri, T., Shibata, M., Sunakawa, H., Kobayashi, K., Ichihashi, T., Usui, A., Jpn. J. Appl. Phys. 42, L1 (2003).Google Scholar
14Williams, A.D., Moustakas, T.D., J. Cryst. Growth 300, 37 (2007).Google Scholar
15Porowski, S., MRS Internet J. Nitride Semicond. Res. 4S1, G1.3 (1999).Google Scholar
16Inoue, T., Seki, Y., Oda, O., Kurai, S., Yamada, Y., Taguchi, T., Phys. Status Solidi B 223 15 (2001).Google Scholar
17Yamane, H., Shimada, M., Sekiguchi, T., DiSalvo, F.J., J. Cryst. Growth 186, 8 (1998).Google Scholar
18Kawamura, F., Morishita, M., Omae, K., Yoshimura, M., Mori, Y., Sasaki, T., Jpn. J. Appl. Phys. 42, L879 (2003).Google Scholar
19Dwiliń;ski, R., Doradziński, R., Garczynński, J., Sierzputowski, L., Baranowski, J.M., Kamińska, M., Diamond Relat. Mater. 7, 1348 (1998).Google Scholar
20Hashimoto, T., Wu, F., Speck, J.S., Nakamura, S., Jpn. J. Appl. Phys. 46, L889 (2007).Google Scholar
21Paskova, T., Kroeger, R., Figge, S., Hommel, D., Darakchieva, V., Monemar, B., Preble, E., Hanser, A., Williams, N.M., Tutor, M., Appl. Phys. Lett. 89, 051914 (2006).Google Scholar
22Hanser, D., Liu, L., Preble, E.A., Udwary, K., Paskova, T., Evans, K.R., J. Cryst. Growth 310, 3953 (2008).Google Scholar
23Weyers, M., Richter, E., Hennig, C., Hagedorn, S., Wernicke, T., Tränkle, G., Proc. of SPIE 6910, 69100I (2008).Google Scholar
24Lucznik, B., Pastuszka, B., Grzegory, I., Boćkowski, M., Kamler, G., Litwin-Staszewska, E., Porowski, S., J. Cryst. Growth 281, 38 (2005).Google Scholar
25Haskell, B.A., Wu, F., Matsuda, S., Craven, M.D., Fini, P.T., DenBaars, S.P., Speck, J.S., Nakamura, S., Appl. Phys. Lett. 83, 1554 (2003).Google Scholar
26Haskell, B.A., Chakaraborty, A., Wu, F., Sasano, H., Fini, P.T., Denbaars, S.P., Speck, J.S., Nakamura, S., J. Electron. Mater. 34, 357 (2005).Google Scholar
27Haskell, B.A., Wu, F., Craven, M.D., Matsuda, S., Fini, P.T., Fujii, T., Fujito, K., DenBaars, S.P., Speck, J.S., Nakamura, S., Appl. Phys. Lett. 83, 644 (2003).Google Scholar
28Haskell, B.A., Baker, T.J., McLaurin, M.B., Wu, F., Fini, P.T., DenBaars, S.P., Speck, J.S., Nakamura, S., Appl. Phys. Lett. 86, 111917 (2005).Google Scholar
29Baker, T.J., Haskell, B.A., Wu, F., Fini, P.T., Speck, J.S., Nakamura, S., Jpn. J. Appl. Phys. 44, L920 (2005).Google Scholar
30Fujito, K., Kiyomi, K., Mochizuki, T., Oota, H., Namita, H., Nagao, S., Fujimura, I., Phys. Status Solidi A 205, 1056 (2008).Google Scholar
31Hiramatsu, K., Nishiyama, K., Motogaito, A., Miyake, H., Iyechika, Y., Maeda, T., Phys. Status Solidi A 176, 535 (1999).Google Scholar