Hostname: page-component-5d59c44645-klj7v Total loading time: 0 Render date: 2024-02-28T09:28:41.740Z Has data issue: false hasContentIssue false

Bandgap and Interface Engineering for Advanced Electronic and Photonic Devices

Published online by Cambridge University Press:  29 November 2013

Get access


During the last decade a powerful new approach for designing semiconductor structures with tailored electronic and optical properties, bandgap engineering, has spawned a new generation of electronic and photonic devices. Central to bandgap engineering is the notion that by spatially varying the composition and the doping of a semiconductor over distances ranging from a few microns down to ~2.5 Å (~1 monolayer), one can tailor the band structure of a material in a nearly arbitrary and continuous way. Thus semiconductor structures with new electronic and optical properties can be custom-designed for specific applications.

The enabling technology which has made bandgap engineering an exciting reality with far reaching implications for science and technology is molecular beam epitaxy (MBE), pioneered by Cho and Arthur in the late 1960s.

In the subsequent decade MBE demonstrated jts ability to create ultra-thin (10–100 Å) layers and atomically abrupt interfaces between two different semiconductors (heterojunctions).

Technical Features
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. The concept of bandgap engineering was first introduced in Capasso, F., J. Vac. Sci. Technol. B 1 (1983) p. 457. For a review, see F. Capasso, Science 235 (1987) p. 172.CrossRefGoogle Scholar
2.Cho, A.Y. and Arthur, J.R., in Progress in Solid State Chemistry, Vol. 10, edited by J.O. McCaldin and G. Somorjai (Pergamon, New York, 1975) p. 157.Google Scholar
3.Dingle, R., Wiegmann, W., and Henry, C.H., Phys. Rev. Lett. 33 (1974) p. 827.CrossRefGoogle Scholar
4.Semiconductors and Semimetals, Vol. 24, edited by Dingle, R. (Academic Press, 1987).Google Scholar
5.Kroemer, H., Proc. IEEE 70 (1983) p. 13.CrossRefGoogle Scholar
6.Chen, Y.K., Nottenburg, R.N., Panish, M.B., Hamm, R.A., and Humphrey, D.A., IEEE Electron Device Lett. 10 (1989) p. 267.CrossRefGoogle Scholar
7.Kroemer, H. and Fairman, R.D., U.S. Patent 3,143,533 (1968).Google Scholar
8.Vengurlekar, A., Capasso, F., and Chiu, T. Heng, Appl. Phys. Lett. 57 (1990) p. 1772.CrossRefGoogle Scholar
9.Capasso, F., Tsang, W.T., and Williams, G.F., IEEE Trans. Electron Devices ED-30 (1983) p. 381.CrossRefGoogle Scholar
10.Capasso, F., Tsang, W.T., Hutchinson, A.L., and Williams, G.F., Appl. Phys. Lett. 40 (1982) p. 38.CrossRefGoogle Scholar
11.Kagawa, T., Iwamura, H., and Mikami, O., Appl. Phys. Lett. 54 (1989) p. 33.CrossRefGoogle Scholar
12.Kagawa, T., Kawamura, A., Asai, A., Naganuma, M., and Mikami, O., Appl. Phys. Lett. 55 (1989) p. 993.CrossRefGoogle Scholar
13.Capasso, F., Annu. Rev. Mater. Sci. 16 (1986) p. 263.CrossRefGoogle Scholar
14.Kroemer, H., RCA Rev. 18 (1957) p. 332.Google Scholar
15.Capasso, F., Tsang, W.T., Bethea, C.G., Hutchinson, A.L., and Levine, B.F., Appl. Phys. Lett. 42 (1983) p. 93.CrossRefGoogle Scholar
16.Hayes, J.R., Capasso, F., Gossard, A., Malik, R.J., and Wiegmann, W., Electron. Lett. 19 (1983) p. 410.CrossRefGoogle Scholar
17.Miller, D.L., Asbeck, P.M., Anderson, R.J., and Eisen, F.H., Electron. Lett. 19 (1983) p. 367.CrossRefGoogle Scholar
18.Ishibashi, T., Nakajima, H., Ito, H., Yamahata, S., and Matsuoka, Y., Technical Digest of the Device Research Conf. (1990), Santa Barbara, CA, paper VIIB-3.Google Scholar
19.Iyer, S.S., Patton, G.L., Stork, J.M.C., Meyerson, B.J., and Harame, D.L., IEEE Trans. Electron. Devices 36 (1989) p. 2043.CrossRefGoogle Scholar
20.Capasso, F., Beltram, F., Malik, R.J., and Walker, F., IEEE Electron Devices Lett. 9 (1988) p. 377.CrossRefGoogle Scholar
21.Ralph, S.E., Capasso, F., and Malik, R.J., Phys. Rev. Lett. 63 (1989) p. 2272.CrossRefGoogle Scholar
22.Chang, L.L., Esaki, L., and Tsu, R., Appl. Phys. Lett. 24 (1974) p. 593.CrossRefGoogle Scholar
23.Brown, E.R., Parker, C.D., Mahoney, L.J., Söderstrom, J.R., and McGill, T.C., Technical Digest of the Device Research Conf. (1989), paper IIIA-6.Google Scholar
24.Capasso, F. and Kiehl, R.A., J. Appl. Phys. 58 (1985) p. 1366.CrossRefGoogle Scholar
25. For a review on quantum transistors, see Capasso, al., IEEE Trans. Electron Devices 36 (1989) p. 2065. For quantum devices in general, see F Capasso and S. Datta, Physics Today 43 (1990) p. 74.CrossRefGoogle Scholar
26.Esaki, L. and Tsu, R., IBM J. Res. Dev. 14 (1970) p. 61.CrossRefGoogle Scholar
27.Beltram, F., Capasso, F., Sivco, D.L., Hutchinson, A.L., Chu, S.G., and Cho, A.Y., Phys. Rev. Lett. 64 (1990) p. 3167.CrossRefGoogle Scholar
28.Capasso, F., Mohammed, K., and Cho, A.Y., IEEE Quantum Electron. 22 (1986) p. 1853.CrossRefGoogle Scholar
29.Levine, B.F., Bethea, C.G., Hasnain, G., Walker, J., and Malik, R.J., Electron. Lett. 24 (1988) p. 747.CrossRefGoogle Scholar
30.Capasso, F., Cho, A.Y., Mohammed, K., and Foy, P.W., Appl. Phys. Lett. 46 (1985) p. 664.CrossRefGoogle Scholar
31.Sorba, L., Bratina, G., Ceccone, G., Antonini, A., Walker, J.F., Micovic, M., and Franciosi, A., Phys. Rev. B 43 (1991) p. 2450 and Surf. Sci. (in press).CrossRefGoogle Scholar
32.McKinley, J.T., Hwu, Y., Koltenbah, B.E.C., Margaritondo, G., Baroni, S., and Resta, R., J. Vac. Sci. Technol. B (in press).Google Scholar
33.Muñoz, A., Chetty, N., and Martin, R.M., Phys. Rev. B 41 (1990) p. 2976.Google Scholar
34.Peressi, M., Baroni, S., Resta, R., and Baldereschi, A., Phys. Rev. B, March 15, 1991.Google Scholar