Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-cgcw8 Total loading time: 0.235 Render date: 2021-09-22T00:35:24.408Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Atom-Probe Tomography of Semiconductor Materials and Device Structures

Published online by Cambridge University Press:  02 March 2012

Get access

Abstract

The development of laser-assisted atom-probe tomography (APT) analysis and new sample preparation approaches have led to significant advances in the characterization of semiconductor materials and device structures by APT. The high chemical sensitivity and three-dimensional spatial resolution of APT makes it uniquely capable of addressing challenges resulting from the continued shrinking of semiconductor device dimensions, the integration of new materials and interfaces, and the optimization of evolving fabrication processes. Particularly pressing concerns include the variability in device performance due to discrete impurity atom distributions, the phase and interface stability in contacts and gate dielectrics, and the validation of simulations of impurity diffusion. This overview of APT of semiconductors features research on metal-silicide contact formation and phase control, silicon field-effect transistors, and silicon and germanium nanowires. Work on silicide contacts to silicon is reviewed to demonstrate impurity characterization in small volumes and indicate how APT can facilitate defect mitigation and process optimization. Impurity contour analysis of a pFET semiconductor demonstrates the site-specificity that is achievable with current APTs and highlights complex device challenges that can be uniquely addressed. Finally, research on semiconducting nanowires and nanowire heterostructures demonstrates the potential for analysis of materials derived from bottom-up synthesis methods.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R., Bunton, J.H., Gorman, B., Annu. Rev. Mater. Res. 37, 681 (2007).CrossRefGoogle Scholar
2.Ronsheim, P., Flaitz, P., Hatzistergos, M., Molella, C., Thompson, K., Alvis, R., Appl. Surf. Sci. 255, 1547 (2008).CrossRefGoogle Scholar
3.Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F., Gorman, B., Ultramicroscopy, 107, 131 (2007).CrossRefGoogle Scholar
4.Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A., Smith, G.D.W., Ultramicroscopy, 79, 287 (1999).CrossRefGoogle Scholar
5.Lavoie, C., d'Heurle, F.M., Detavernier, C., Cabral, C., Microelectron. Eng. 70, 144 (2003).CrossRefGoogle Scholar
6.Mangelinck, D., Dai, J.Y., Pan, J.S., Lahiri, S.K., Appl. Phys. Lett. 75, 1736 (1999).CrossRefGoogle Scholar
7.Lavoie, C., Detavernier, C., Cabral, C. Jr., d'Heurle, F.M., Kellock, A.J., Jordan-Sweet, J., Harper, J.M.E., Microelectron. Eng. 83, 2042 (2006).CrossRefGoogle Scholar
8.Kim, Y.C., Adusumilli, P., Lauhon, L.J., Seidman, D.N., Jung, S.Y., Lee, H.D., Alvis, R.L., Ulfig, R.M., Olson, J.D., Appl. Phys. Lett. 91, 113106 (2007).CrossRefGoogle Scholar
9.Hellman, O.C., Vandenbroucke, J.A., Rusing, J., Isheim, D., Seidman, D.N., Microsc. Microanal. 6, 437 (2000).Google Scholar
10.Ronsheim, P., McMurray, J., Flaitz, P., Parks, C., Thompson, K., Larson, D.J., Kelly, T.F., International Conference on Frontiers of Characterization and Metrology, AIP Conf. Proc. 931, 129 (2007).CrossRefGoogle Scholar
11.Hoummada, K., Mangelinck, D., Cadel, E., Perrin-Pellegrino, C., Blavette, D., Deconihout, B., Microelectron. Eng. 84, 2517 (2007).CrossRefGoogle Scholar
12.Mangelinck, D., Hoummada, K., Cojocaru-Mirédin, O., Cadel, E., Perrin-Pellegrino, C., Blavette, D., Microelectron. Eng. 85, 1995 (2008).CrossRefGoogle Scholar
13.Cojocaru-Mirédin, O., Mangelinck, D., Hoummada, K., Cadel, E., Blavette, D., Perrin-Pellegrino, C., Scripta Mater. 57, 373 (2007).CrossRefGoogle Scholar
14.Adusumilli, P., Lauhon, L.J., Seidman, D.N., Murray, C.E., Avayu, O., Rosenwaks, R., Appl. Phys. Lett. 94, 113103 (2009).CrossRefGoogle Scholar
15.Adusumilli, P., Murray, C.E., Lauhon, L.J., Avayu, O., Rosenwaks, Y., Seidman, D.N., ECS Trans. 19,(1), 303 (2009).CrossRefGoogle Scholar
16.Akutsu, H., Itokawa, H., Nakamura, K., Iinuma, T., Suguro, K., Uchida, H., Tada, M., Mater. Res. Soc. Symp. Proc. 1070, 1070–E02 (2008).CrossRefGoogle Scholar
17.McCertney, M.R., Gribelyuk, M.A., Li, J., Ronsheim, P.A., McMurray, J.S., Smith, D.J., Appl. Phys. Lett. 80, 3213 (2002).CrossRefGoogle Scholar
18.Williams, C.C., Ann. Rev. Mater. Sci. 29, 471, (1999).CrossRefGoogle Scholar
19.Ronsheim, P.A., Hatzistergos, M., Jin, S., INSIGHT 2009 conference proceedings, J. Vac. Sci. Techol. B, 28 [1] (2010). p. 423.Google Scholar
20.Lieber, C.M., Wang, Z.L., MRS Bull. 32, 99 (2007).CrossRefGoogle Scholar
21.Lu, W., Xie, P., Lieber, C.M., IEEE Trans. Electron Devices 55, 2859 (2008).CrossRefGoogle Scholar
22.Li, Y., Qian, F., Xiang, J., Lieber, C.M., Mater. Today 9, 18 (2006).CrossRefGoogle Scholar
23.Putnam, M.C., Filler, M.A., Kayes, B.M., Kelzenberg, M.D., Guan, Y., Lewis, N.S., Eiler, J.M., Atwater, H.A., Nano Lett. 8, 3109 (2008).CrossRefGoogle Scholar
24.Galtrey, M.J., Oliver, R.A., Kappers, M.J., Humphreys, C.J., Clifton, P.H., Larson, D.J., Saxey, D.W., Cerezo, A., J. Appl. Phys. 104, 013524 (2008).CrossRefGoogle Scholar
25.Kuykendall, T., Ulrich, P., Aloni, S., Yang, P., Nat. Mater. 6, 951 (2007).CrossRefGoogle Scholar
26.Mieszawska, A.J., Jalilian, R., Sumanasekera, G.U., Zamborini, F.P., Small 3, 722 (2007).CrossRefGoogle Scholar
27.Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M., Nature 415, 617 (2002).CrossRefGoogle Scholar
28.Lauhon, L.J., Gudiksen, M.S., Wang, C.L., Lieber, C.M., Nature 420, 57 (2002).CrossRefGoogle Scholar
29.Perea, D.E., Lensch, J.L., May, S.J., Wessels, B.W., Lauhon, L.J., Appl. Phys. A 85, 271 (2006).CrossRefGoogle Scholar
30.Perea, D.E., Allen, J.E., May, S.J., Wessels, B.W., Seidman, D.N., Lauhon, L.J., Nano Lett. 6, 181 (2006).CrossRefGoogle Scholar
31.Perea, D.E., Wijaya, E., Lensch-Falk, J.L., Hemesath, E.R., Lauhon, L.J., J. Solid State Chem. 181, 1642 (2008).CrossRefGoogle Scholar
32.Wagner, R.S., Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
33.Perea, D.E., Hemesath, E.R., Schwalbach, E.J., Lensch-Falk, J.L., Voorhees, P.W., Lauhon, L.J., Nat. Nanotechnol. 4, 315 (2009).CrossRefGoogle Scholar
34.Gorman, B.P.Norman, A.G., Yan, Y., Micro. Microanal. 13, (6), 493 (2007).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Atom-Probe Tomography of Semiconductor Materials and Device Structures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Atom-Probe Tomography of Semiconductor Materials and Device Structures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Atom-Probe Tomography of Semiconductor Materials and Device Structures
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *