Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T22:02:27.059Z Has data issue: false hasContentIssue false

XPS Investigation on Changes in UO2 Speciation following Exposure to Humidity

Published online by Cambridge University Press:  27 April 2016

Scott B. Donald
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
M. Lee Davisson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
Art J. Nelson*
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
*
Get access

Abstract

High purity UO2 powder samples were subjected to accelerated aging under controlled conditions with relative humidity ranging from 34% to 98%. Characterization of the chemical speciation of the products was accomplished using X-ray photoelectron spectroscopy (XPS). A shift to higher uranium oxidation states was found to be directly correlated to increased relative humidity exposure. Additionally, the relative abundance of O2-, OH-, and H2O was found to vary with exposure time. Thus, it is expected that uranium oxide materials exposed to high relative humidity conditions during processing and storage would display a similar increase in average uranium valence.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Desgranges, L., Baldinozzi, G., Rousseau, G., Nièpce, J.C., Calvarin, G., Inorg. Chem. 48 7585 (2009).CrossRefGoogle Scholar
Alexandrov, V., Shvareva, T.Y., Hayun, S., Asta, M., Navrotsky, A., J. Phys. Chem. Lett. 2 3130 (2011).CrossRefGoogle Scholar
Bo, T., Lan, J.H., Zhao, Y.L., Zhang, Y.J., He, C.H., Chai, Z.F., Shi, W.-Q., J. Nucl. Mater. 454 446 (2014).CrossRefGoogle Scholar
Hay, P.J., Mater. Res. Soc. Symp. Proc. 893 (2006).Google Scholar
Maldonado, P., Evins, L.Z., Oppeneer, P.M., J. Phys. Chem. C 118 8491 (2014).CrossRefGoogle Scholar
Tian, X., Wang, H., Xiao, H., Gao, T., Comput. Mater. Sci. 91 364 (2014).CrossRefGoogle Scholar
Weck, P.F., Kim, E., Jové-Colón, C.F., Sassani, D.C., Dalt. Trans. 42 4570 (2013).CrossRefGoogle Scholar
Rousseau, G., Desgranges, L., Charlot, F., Millot, N., Nièpce, J.C., Pijolat, M., Valdivieso, F., Baldinozzi, G., Bérar, J.F., J. Nucl. Mater. 355 10 (2006).CrossRefGoogle Scholar
McEachern, R.J., Taylor, P., J. Nucl. Mater. 254 87 (1998).CrossRefGoogle Scholar
Ilton, E.S., Bagus, P.S., Surf. Interface Anal. 43 1549 (2011).CrossRefGoogle Scholar
Idriss, H., Surf. Sci. Rep. 65 67 (2010).CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C., Freund, M.S., Burns, P.C., Geochim. Cosmochim. Acta 73 2488 (2009).CrossRefGoogle Scholar
Senanayake, S.D., Waterhouse, G.I.N., Chan, A.S.Y., Madey, T.E., Mullins, D.R., Idriss, H., Catal. Today 120 151 (2007).CrossRefGoogle Scholar
Holliday, K.S., Siekhaus, W. and Nelson, A.J., J. Vac. Sci. Technol. A 31, 031401 (2013).CrossRefGoogle Scholar