Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T11:07:25.968Z Has data issue: false hasContentIssue false

Using bacteria to make improved, nacre-inspired materials

Published online by Cambridge University Press:  24 February 2016

Dominik T. Schmieden
Affiliation:
Department of Bionanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Anne S. Meyer*
Affiliation:
Department of Bionanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Marie-Eve Aubin-Tam*
Affiliation:
Department of Bionanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nacre (mother of pearl) is an attractive model for the development of new materials. Its sheet structure of alternating layers of calcium carbonate and an organic matrix confers it highly desirable properties such as high toughness and strength. In this study, we produce a nacre-inspired composite material using only bacterially-produced components. Calcium carbonate is crystallized via the action of ureolytic bacteria. After each crystallization event, we apply bacterially produced γ-polyglutamate (PGA) to the sample, which promotes layering compared to the PGA-free control. We show that the combination of these two compounds yields a layered material reminiscent of nacre, showing a way towards the biotechnological production of new, nacre-inspired materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

References

REFERENCES

Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M., and Seki, Y., Prog. Mater. Sci. 53 (1), 1 (2008).Google Scholar
Sun, J. and Bhushan, B., RSC Adv. 2 (20), 7617 (2012).Google Scholar
Wang, J., Cheng, Q., and Tang, Z., Chem. Soc. Rev. 41 (3), 1111 (2012).CrossRefGoogle Scholar
Corni, I., Harvey, T. J., Wharton, J. A., Stokes, K. R., Walsh, F. C., and Wood, R. J. K., Bioinspiration Biomimetics 7 (3), 31001 (2012).Google Scholar
Deville, S., Saiz, E., Nalla, R. K., and Tomsia, A. P., Science 311 (5760), 515 (2006).Google Scholar
Das, P., Malho, J.-M., Rahimi, K., Schacher, F. H., Wang, B., Demco, D. E., and Walther, A., Nat. Commun. 6 (2015).Google Scholar
Hammes, F. and Verstraete, W., Rev. Environ. Sci. Biotechnol. 1 (1), 37 (2002).Google Scholar
Harkes, M. P., van Paassen, L. A., and Whiffin, V. S., Geomicrobiol. J. 24 (5), 417 (2007).Google Scholar
van Paassen, L. A., Ghose, R., van der Linden, T., van der Star, W., and van Loosdrecht, M., J. Geotech. Geoenviron. Eng. 136 (12), 1721 (2010).CrossRefGoogle Scholar
Bang, S. S., Galinat, J. K., and Ramakrishnan, V., Enzyme Microb. Technol. 28 (4–5), 404 (2001).Google Scholar
Bachmeier, K. L., Williams, A. E., Warmington, J. R., and Bang, S. S., J. Biotechnol. 93 (2), 171 (2002).Google Scholar
Makino, S., Uchida, I., Terakado, N., Sasakawa, C., and Yoshikawa, M., J. Bacteriol. 171 (2), 722 (1989).CrossRefGoogle Scholar
Oppermann-Sanio, F. B. and Steinbüchel, A., Naturwissenschaften 89 (1), 1122 (2002).Google Scholar
Buescher, J. M. and Margaritis, A., Crit. Rev. Biotechnol. 27 (1), 1 (2007).CrossRefGoogle Scholar
Sugawara, A. and Kato, T., Chem. Commun. (6), 487 (2000).Google Scholar
Jiang, H., Shang, L., Yoon, S., Lee, S., and Yu, Z., Biotechnol. Lett. 28 (16), 12411246 (2006).Google Scholar
Ashiuchi, M., Soda, K., and Misono, H., Biochem. Biophys. Res. Commun. 263 (1), 6 (1999).Google Scholar
Kedia, G., Hill, D., Hill, R., and Radecka, I., J. Nanosci. Nanotechnol. 10 (9), 5926 (2010).Google Scholar
Manocha, B. and Margaritis, A., Biotechnol. Prog. 26 (3), 734 (2010).Google Scholar
Gao, H., Ji, B., Jäger, I. L., Arzt, E., and Fratzl, P., PNAS 100 (10), 5597 (2003).CrossRefGoogle Scholar