Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T10:14:24.706Z Has data issue: false hasContentIssue false

A π-type Thermoelectric Generator Wrapped with Doped Single-walled Carbon Nanotube Sheets

Published online by Cambridge University Press:  14 January 2019

Masatoshi Ishimaru
Affiliation:
High Performance Plastics Company, SEKISUI CHEMICAL Co.,Ltd., 2-1 Hyakuyama Shimamoto-cho, Mishima-gun, Osaka618-0021, Japan
Akihito Kubo
Affiliation:
High Performance Plastics Company, SEKISUI CHEMICAL Co.,Ltd., 2-1 Hyakuyama Shimamoto-cho, Mishima-gun, Osaka618-0021, Japan
Tsuyoshi Kawai
Affiliation:
Division of Materials Science, Nara Institute of Science and Technology, Ikoma630-0192, Japan
Yoshiyuki Nonoguchi*
Affiliation:
Division of Materials Science, Nara Institute of Science and Technology, Ikoma630-0192, Japan JST, PRESTO, Kawaguchi332-0012, Japan
Get access

Abstract

The upcoming IoT society requires portable energy harvesters including thermoelectric generators around room temperature. Here we show a prototype, lightweight thermoelectric generator based on doped single-walled carbon nanotubes. The generator is fabricated by the standard printing and cut-and-paste techniques. The 12 cm-scale generator with a commercial DC-DC converter exhibits thermoelectric outputs high enough to drive small devices such as a light-emitting diode (LED). We believe such demonstration facilitates the studies not only of further improvements in the thermoelectric properties of carbon nanotube materials but also of the novel design for thermoelectric generators on the basis of thermal engineering.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahk, J.-H., Fang, H., Yazawa, K., and Shakouri, A., J. Mater. Chem. C 3, 10362 (2015)CrossRefGoogle Scholar
Tian, R., Wan, C., Hayashi, N., Aoai, T., Koumoto, K., MRS Bull. 43, 193 (2018).CrossRefGoogle Scholar
Mori, T., and Priya, S., MRS Bull. 43, 176 (2018).CrossRefGoogle Scholar
Hewitt, C. A., Kaiser, A. B., Roth, S., Craps, M., Czerw, R. and Carroll, D. L., Nano Lett . 12, 13071310 (2012).CrossRefGoogle Scholar
Yu, C., Murali, A., Choi, K. and Ryu, Y., Energy Environ. Sci. 5, 9481 (2012).CrossRefGoogle Scholar
Suemori, K., Hoshino, S., and Kamata, T., Appl. Phys. Lett. 103, 153902 (2013).CrossRefGoogle Scholar
Nonoguchi, Y., Ohashi, K., Kanazawa, R., Ashiba, K., Hata, K., Nakagawa, T., Adachi, C., Tanase, T., and Kawai, T., Sci. Rep. 3, 3344 (2013).CrossRefGoogle Scholar
Nonoguchi, Y., Iihara, Y., Ohashi, K., Murayama, T., and Kawai, T., Chem. Asian J. 11, 2423 (2016).CrossRefGoogle Scholar
Nonoguchi, Y., Nakano, M., Murayama, T., Hagino, H., Hama, S., Miyazaki, K., Matsubara, R., Nakamura, M., and Kawai, T., Adv. Funct. Mater. 26, 3021 (2016).CrossRefGoogle Scholar
Nonoguchi, Y., Tani, A., Ikeda, T., Goto, C., Tanifuji, N., Uda, R. M., and Kawai, T., Small 13, 1603420 (2017).CrossRefGoogle Scholar
Nakano, M., Nakashima, T., Kawai, T., and Nonoguchi, Y., Small 13, 1700804 (2017).CrossRefGoogle Scholar
Nonoguchi, Y., Sudo, S., Tani, A., Murayama, T., Nishiyama, Y., Uda, R. M., and Kawai, T., Chem. Commun. 53, 10259 (2017).CrossRefGoogle Scholar
MacLeod, B. A., Stanton, N. J., Gould, I. E., Wesenberg, D., Ihly, R., Owczarczyk, Z. R., Hurst, K. E., Fewox, C. S., Folmar, C. N., Holman Hughes, K., Zink, B. L., Blackburn, J. L., Ferguson, A. J., Energy Environ. Sci. 10, 2168 (2017).CrossRefGoogle Scholar
Suemori, K., Watanabe, Y., and Hoshino, S., Appl. Phys. Lett. 106, 113902 (2015).CrossRefGoogle Scholar
Choi, J., Jung, Y., Yang, S. J., Oh, J. Y., Oh, J., Jo, K., Son, J. G., Moon, S. E., Park, C. R., and Kim, H., ACS Nano 11, 7608 (2017).CrossRefGoogle Scholar