Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-14T17:21:44.703Z Has data issue: false hasContentIssue false

Thin n/p GaAs Junctions for Novel High-Efficiency Phototransducers Based on a Vertical Epitaxial Heterostructure Architecture

Published online by Cambridge University Press:  11 January 2016

M.C.A. York
Affiliation:
Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463, Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K OA5, QC, Canada
F. Proulx
Affiliation:
Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463, Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K OA5, QC, Canada Azastra Opto Inc., Suite 100, 6090 Longleaf Drive, Ottawa, Ontario, Canada K1W 1G3.
D. P. Masson
Affiliation:
Azastra Opto Inc., Suite 100, 6090 Longleaf Drive, Ottawa, Ontario, Canada K1W 1G3.
A. Jaouad
Affiliation:
Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463, Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K OA5, QC, Canada
B. Bouzazi
Affiliation:
Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463, Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K OA5, QC, Canada
R. Arès
Affiliation:
Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463, Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K OA5, QC, Canada
V. Aimez
Affiliation:
Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463, Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K OA5, QC, Canada
S. Fafard*
Affiliation:
Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463, Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K OA5, QC, Canada Azastra Opto Inc., Suite 100, 6090 Longleaf Drive, Ottawa, Ontario, Canada K1W 1G3.
Get access

Abstract

Thin GaAs photovoltaic heterostructures are grown by MOCVD with various p-GaAs base thicknesses. The total n/p absorbing thickness is varied systematically. Output voltages up to ∼1.155V were obtained for individual n/p junctions at an average illumination intensity of ∼8W/cm2. Novel phototransducer devices are then achieved with a vertical epitaxial heterostructure architecture, monolithically integrating 5 or more such thin n/p junctions. Around the design wavelength, the stacked heterostructure design is yielding an optimal external quantum efficiency approaching unity divided by the number of junctions. The modeled and measured conversion efficiencies are exceeding 60%. The photocarrier extraction properties are simulated for different junction thicknesses using a model based on a 3-dimensional (3D) radially-symmetric TCAD implementation of the heterostructures. The study clearly demonstrates that for such thin n/p junctions the photocarrier extraction can still be efficient due to the operation at reduced current densities and higher voltages in heterostructures enhancing electrical power extraction. With the supplementary add-on of a window layer with a reduced sheet resistance for the stacked structure, we demonstrate the possible efficient operation of phototransducers for optical inputs exceeding 150 W/cm2, even for the case of devices designed without gridlines.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Behaghel, B., Tamaki, R., Vandamme, N., Watanabe, K., Dupuis, C., Bardou, N., Sodabanlu, H., Cattoni, A., Okada, Y., Sugiyama, M., Collin, S., and Guillemoles, J.-F., Appl. Phys. Lett. 106, 081107 (2015).CrossRefGoogle Scholar
Vandamme, et al. , IEEE J. Photov. 5, 565 (2014).CrossRefGoogle Scholar
Miller, O. D., Yablonovitch, E., and Kurtz, S. R., IEEE J. Photovoltaics 2, 303 (2012).Google Scholar
Rau, U., Paetzold, U. W., and Kirchartz, T., Phys. Rev. B 90, 035211 (2014).CrossRefGoogle Scholar
Steiner, M. A., Geisz, J. F., García, I., Friedman, D. J., Duda, A., and Kurtz, S. R., J. Appl. Phys. 113, 123109 (2013).CrossRefGoogle Scholar
Liang, D., Kang, Y., Huo, Y., Chen, Y., Cui, Y., and Harris, J.S., Nano Letters 13, 4850 (2013).Google Scholar
Fafard, S. and Masson, D. P., US Patent Appl. 61913675 (2013).Google Scholar
Masson, D.P., Proulx, F., and Fafard, S., Progress in Photovoltaic, October 2015.Google Scholar
Valdivia, C.E., Wilkins, M.M., Boussairi, B., Jaouad, A., Aimez, V., Arès, R., Masson, D.P., Fafard, S., and Hinzer, K., SPIE OPTO, p. 93580E, International Society for Optics and Photonics (2015).Google Scholar
Oliva, E., Dimroth, F., Bett, A.W., Progress in Photovoltaics: Research and Applications 16, 289 (2008).CrossRefGoogle Scholar
Andreev, V. et al. . Proc. 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 761-763 (2003).Google Scholar
Takagi, S., Zhang, R., Suh, J., Kim, S.H., Yokoyama, M., Nishi, K., Takenaka, M., Jap. J. Appl. Phys. 54, 06FA01 (2015).CrossRefGoogle Scholar
Fafard, S. et al. submitted (2015).Google Scholar
Lumb, M.P. et al. J. Appl. Phys. 116, 194504 (2014).Google Scholar
Sotooddeh, et al, J. Appl. Phys. 87, 2890 (2000).CrossRefGoogle Scholar
Jain, S.C., Roulston, D.J., Solid-State Electron. 34, 453 (1991).Google Scholar
Kalusmeier-Brown, M.E., Lundstrom, M.S., M.R. Melloch IEEE Trans. Electron Devices 36.10, 2146 (1989).Google Scholar
Walker, A., Höhn, O., Micha, D., Wagner, L., Helmers, H., Bett, A., and Dimroth, F., SPIE OPTO (International Society for Optics and Photonics, 2015) pp. 93580A – 93580A.Google Scholar
Razeghi, M., “The MOCVD Challenge: A survey of GaInAsP-InP and GaInAsP-GaAs for photonic and electronic device applications”, Second Edition, Electronic materials and devices series (CRC Press, 2010).Google Scholar
Wilkins, M., Valdivia, C. E., Gabr, A. M., Masson, D., Fafard, S., & Hinzer, K. Journal of Applied Physics, 118(14), 143102 (2015).Google Scholar
York, et al., Photonics West 2016.Google Scholar