Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-10T10:44:43.594Z Has data issue: false hasContentIssue false

Temperature Dependent Current-Voltage Characteristics of Pt/MoS2 Schottky Junction

Published online by Cambridge University Press:  19 June 2019

Neetika
Affiliation:
Department of Physics, Indian Institute of Technology Roorkee, Roorkee247667, India
Ramesh Chandra
Affiliation:
Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee247667, India
V. K. Malik*
Affiliation:
Department of Physics, Indian Institute of Technology Roorkee, Roorkee247667, India
*
*Corresponding author: vivekfph@iitr.ac.in
Get access

Abstract

Molybdenum disulphide (MoS2) is one of the transition metal dichalcogenide (TMD) materials which has attracted attention due to its various interesting properties. MoS2 is very promising for electronic and optoelectronic devices due to its indirect band gap (∼1.2 eV) for few layer and direct band gap (∼1.8 eV) for monolayer MoS2. In MoS2 based Schottky devices, Schottky barrier height depends on the thickness of MoS2 because of its tunable electronic properties. Here, we have used DC sputtering technique to fabricate metal-semiconductor junction of MoS2 with platinum (Pt) metal contacts. In this work, MoS2 thin film (∼10 nm) was deposited on p-Silicon (111) using DC sputtering technique at optimized parameters. Schottky metallization of Pt metal (contact area ∼ 0.785x10-2 cm2) was also done using DC sputtering. Current-voltage (I-V) characteristics of the Pt/MoS2 Schottky junction have been investigated in the temperature range 80-350K. Forward I-V characteristics of Pt/MoS2 junction are analysed to calculate different Schottky parameters. Schottky barrier height increases and ideality factor decreases on increasing the temperature from 80-350K. The I-V-T measurements suggest the presence of local inhomogeneities at the Pt/MoS2 junction. Schottky barrier inhomogeneities occur in case of rough interface. In such cases, the Schottky barrier height does not remain constant and vary locally. Current transport through the Schottky junction is a thermally activated process. As temperature increases, more and more electrons overcome the spatially inhomogeneous barrier height. As a result, the ideality factor becomes close to unity and apparent barrier height increases due to increase in temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Kang, S.B., Kwon, K.C., Choi, K.S., Lee, R., Hong, K., Suh, J.M., Im, M.J., Sanger, A., Choi, I.Y., Kim, S.Y., Shin, J.C., Jang, H.W., Choi, K.J., Nano Energy 50, 649658 (2018).CrossRefGoogle Scholar
Wu, J.Y., Chun, Y.T., Li, S., Zhang, T., Chu, D., ACS Appl. Mater. Interfaces 10, 2461324619 (2018).CrossRefGoogle ScholarPubMed
Pospischil, A., Mueller, T., Appl. Sci. 6, 78 (2016).CrossRefGoogle Scholar
Neetika, A. Sanger, Malik, V.K., Chandra, R., Int. J. Hydrogen Energy 43, 1114111149 (2018).CrossRefGoogle Scholar
Fontana, M., Deppe, T., Boyd, A.K., Rinzan, M., Liu, A.Y., Paranjape, M., Barbara, P., Sci. Rep. 3, 1634 (2013).CrossRefGoogle Scholar
Kuc, A., Heine, T., Kis, A., MRS Bull. 40, 577584 (2015).CrossRefGoogle Scholar
Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (New York Wiley, 1981) 868.Google Scholar
Neetika, , Kumar, S., Sanger, A., Chourasiya, H.K., Kumar, A., Asokan, K., Chandra, R., Malik, V.K., J. Alloys Compd. 797, 582588 (2019).CrossRefGoogle Scholar
Kwon, J., Lee, J.Y., Yu, Y.J., Lee, C.H., Cui, X., Hone, J., Lee, G.H., Nanoscale 9, 61516157 (2017).CrossRefGoogle Scholar
Giannazzo, F., Fisichella, G., Piazza, A., Agnello, S., Roccaforte, F., Phys. Rev. B - Condens. Matter Mater. Phys. 92, 081307 (2015).CrossRefGoogle Scholar
Moun, M., Singh, R., Semicond. Sci. Technol. 33, 125001(2018).CrossRefGoogle Scholar
Kaushik, N., Nipane, A., Basheer, F., Dubey, S., Grover, S., Deshmukh, M.M., Lodha, S., Appl. Phys. Lett. 105, 113505 (2014).CrossRefGoogle Scholar
Kim, J.S., Lee, H.S., Jeon, P.J., Lee, Y.T., Yoon, W., Ju, S.-Y., Im, S., Small 10, 48454850 (2014).CrossRefGoogle Scholar
Wurst, E.C., Borneman, E.H., J. Appl. Phys. 28, 235240 (1957).CrossRefGoogle Scholar
Samad, L., Bladow, S.M., Ding, Q., Zhuo, J., Jacobberger, R.M., Arnold, M.S., Jin, S., ACS Nano 10, 70397046 (2016).CrossRefGoogle Scholar
Ocak, Y.S., Bozkaplan, C., Ahmed, H.S., Tombak, A., Genisel, M.F., Asubay, S., Optik (Stuttg) 142, 644650 (2017).CrossRefGoogle Scholar
Zhang, W., Zhang, P., Su, Z., Wei, G., Nanoscale 7, 18364–78 (2015).CrossRefGoogle Scholar
Allain, A., Kang, J., Banerjee, K., Kis, A., Nat. Mater. 14, 11951205 (2015).CrossRefGoogle Scholar
Liu, Y., Guo, J., Zhu, E., Liao, L., Lee, S.-J., Ding, M., Shakir, I., Gambin, V., Huang, Y., Duan, X., Nature 557, 696700 (2018).CrossRefGoogle Scholar
Li, X., Li, J., Wang, K., Wang, X., Wang, S., Chu, X., Xu, M., Fang, X., Wei, Z., Zhai, Y., Zou, B., Appl. Phys. Lett. 109, 242101 (2016).CrossRefGoogle Scholar
Baranwal, V., Kumar, S., Pandey, A.C., Kanjilal, D., J. Alloys Compd. 480, 962965 (2009).CrossRefGoogle Scholar
Jyothi, I., Janardhanam, V., Kim, J.H., Yun, H.J., Jeong, J.C., Hong, H., Lee, S.N., Choi, C.J., J. Alloys Compd. 688, 875881 (2016).CrossRefGoogle Scholar
Kumar, A., Arafin, S., Amann, M.C., Singh, R., Nanoscale Res. Lett. 8, 481 (2013).CrossRefGoogle Scholar
Kumar, A., Asokan, K., Kumar, V., Singh, R., J. Appl. Phys. 112, 024507 (2012).CrossRefGoogle Scholar
Cheung, S.K., Cheung, N.W., Appl. Phys. Lett. 49, 8587 (1986).CrossRefGoogle Scholar
Kumar, S., Katharria, Y.S., Kanjilal, D., J. Appl. Phys. 103, 2123 (2008).Google Scholar
Guo, Y., Han, Y., Li, J., Xiang, A., Wei, X., Gao, S., Chen, Q., ACS Nano 8, 77717779 (2014).CrossRefGoogle Scholar
Werner, J.H., Güttler, H.H., J. Appl. Phys. 69, 15221533 (1991).CrossRefGoogle Scholar