Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T08:20:36.507Z Has data issue: false hasContentIssue false

Synthesis of Cation and Water Free Cryptomelane Type OMS-2 Cathode Materials: The Impact of Tunnel Water on Electrochemistry

Published online by Cambridge University Press:  20 January 2017

Altug S. Poyraz
Affiliation:
Energy Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA.
Jianping Huang
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
Bingjie Zhang
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
Amy C. Marschilok*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
Kenneth J. Takeuchi*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
Esther S. Takeuchi*
Affiliation:
Energy Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
Get access

Abstract

Cryptomelane type manganese dioxides (α-MnO2, OMS-2) are interesting potential cathode materials due to the ability of their one dimensional (1D) tunnels to reversibly host various cations including Li+ and an accessible stable 3+/4+ redox couple. Here, we synthesized metal cation free OMS-2 materials where the tunnels were occupied by only water and hydronium ions. Water was subsequently removed from the tunnels. Cation free OMS-2 and Dry-OMS-2 were used as cathodes in Li based batteries to investigate the role of tunnel water on their electrochemistry. The initial discharge capacity was higher for Dry-OMS-2 (252 mAh/g) compared to OMS-2 (194 mAh/g), however, after 100 cycles Dry-OMS-2 and OMS-2 delivered 137 mAh/g and 134 mAh/g, respectively. Li+ ion diffusion was more facile for Dry-OMS as evidenced by rate capability, at 400 mA/g. Dry-OMS-2 delivered 135mAh/g whereas OMS-2 delivered ∼115 mAh/g. This first report of the impact of tunnel water on the electrochemistry of OMS-2 type materials demonstrates that the presence of tunnel water in OMS-2 type materials negatively impacts the electrochemistry.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, K., Han, X., Hu, Z., Zhang, X., Tao, Z. and Chen, J., Chemical Society reviews 44 (3), 699728 (2015).CrossRefGoogle Scholar
Wu, L., Xu, F., Zhu, Y., Brady, A. B., Huang, J., Durham, J. L., Dooryhee, E., Marschilok, A. C., Takeuchi, E. S. and Takeuchi, K. J., ACS Nano (2015).Google Scholar
Zhang, C., Feng, C., Zhang, P., Guo, Z., Chen, Z., Li, S. and Liu, H., RSC Adv. 2 (4), 16431649 (2012).CrossRefGoogle Scholar
Suib, S. L., Accounts Chem. Res. 41 (4), 479487 (2008).Google Scholar
Suib, S. L., Journal of Materials Chemistry 18 (14), 16231631 (2008).Google Scholar
Huang, J., Poyraz, A. S., Takeuchi, K. J., Takeuchi, E. S. and Marschilok, A. C., Chemical communications 52 (21), 40884091 (2016).CrossRefGoogle Scholar
Poyraz, A. S., Huang, J., Wu, L., Bock, D. C., Zhu, Y., Marschilok, A. C., Takeuchi, K. J. and Takeuchi, E. S., Energy Technology 4, 13581368 (2016).CrossRefGoogle Scholar
Huang, J., Poyraz, A. S., Lee, S.-Y., Wu, L., Zhu, Y., Marschilok, A. C., Takeuchi, K. J. and Takeuchi, E. S., ACS Applied Materials & Interfaces DOI: 10.1021/acsami.6b08549 (2016).Google Scholar
Johnson, C. S., Journal of Power Sources 165 (2), 559565 (2007).CrossRefGoogle Scholar
Hashem, A. M., Abdel-Latif, A. M., Abuzeid, H. M., Abbas, H. M., Ehrenberg, H., Farag, R. S., Mauger, A. and Julien, C. M., Journal of Alloys and Compounds 509 (40), 96699674 (2011).CrossRefGoogle Scholar
Takeuchi, K. J., Yau, S. Z., Menard, M. C., Marschilok, A. C. and Takeuchi, E. S., ACS applied materials & interfaces 4 (10), 55475554 (2012).Google Scholar
Liu, J., Makwana, V., Cai, J., Suib, S. L. and Aindow, M., The Journal of Physical Chemistry B 107 (35), 91859194 (2003).Google Scholar
Luo, J., Zhang, Q., Garcia-Martinez, J. and Suib, S. L., Journal of the American Chemical Society 130 (10), 31983207 (2008).Google Scholar
Yang, Z., Trahey, L., Ren, Y., Chan, M. K. Y., Lin, C., Okasinski, J. and Thackeray, M. M., J. Mater. Chem. A 3 (14), 73897398 (2015).CrossRefGoogle Scholar
Johnson, C. S. and Thackeray, M. M., Journal of Power Sources 97 -8, 437442 (2001).Google Scholar
Hou, J., Liu, L., Li, Y., Mao, M., Lv, H. and Zhao, X., Environmental science & technology 47 (23), 1373013736 (2013).CrossRefGoogle Scholar
Brower, K. R., Oxley, J. C. and Tewari, M., The Journal of Physical Chemistry 93 (10), 40294033 (1989).Google Scholar
Gao, T., Glerup, M., Krumeich, F., Nesper, R., Fjellvåg, H. and Norby, P., The Journal of Physical Chemistry C 112 (34), 1313413140 (2008).CrossRefGoogle Scholar
Qiu, G., Huang, H., Dharmarathna, S., Benbow, E., Stafford, L. and Suib, S. L., Chemistry of Materials 23 (17), 38923901 (2011).Google Scholar
Poyraz, A. S., Huang, J., Cheng, S., Bock, D. C., Wu, L., Zhu, Y., Marschilok, A. C., Takeuchi, K. J. and Takeuchi, E. S., Green Chem. 18 (11), 34143421 (2016).Google Scholar
Dai, J., Li, S. F. Y., Siow, K. S. and Gao, Z., Electrochimica Acta 45 (14), 22112217 (2000).Google Scholar
Liang, S. H., Bulgan, F. T. G., Zong, R. L. and Zhu, Y. F., J. Phys. Chem. C 112 (14), 53075315 (2008).Google Scholar
Zheng, H., Feng, C., Kim, S.-J., Yin, S., Wu, H., Wang, S. and Li, S., Electrochimica Acta 88, 225230 (2013).Google Scholar
Abuzeid, H. M., Hashem, A. M., Narayanan, N., Ehrenberg, H. and Julien, C. M., Solid State Ionics 182 (1), 108115 (2011).Google Scholar
Johnson, C. S., Dees, D. W., Mansuetto, M. F., Thackeray, M. M., Vissers, D. R., Argyriou, D., Loong, C. K. and Christensen, L., Journal of Power Sources 68 (2), 570577 (1997).CrossRefGoogle Scholar
Tompsett, D. A. and Islam, M. S., Chemistry of Materials 25 (12), 25152526 (2013).Google Scholar
Kijima, N., Takahashi, Y., Akimoto, J. and Awaka, J., Journal of Solid State Chemistry 178 (9), 27412750 (2005).Google Scholar
Liu, C., Neale, Z. G. and Cao, G., Materials Today 19 (2), 109123 (2016).Google Scholar