Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T06:43:32.605Z Has data issue: false hasContentIssue false

Synthesis of Calcium Monouranate Particles via an Aqueous Route

Published online by Cambridge University Press:  16 February 2017

Weixuan Ding*
Affiliation:
Institute of Particle Science and Engineering, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
Johannes A. Botha
Affiliation:
Institute of Particle Science and Engineering, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
Bruce C. Hanson
Affiliation:
Institute of Particle Science and Engineering, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
Ian T. Burke
Affiliation:
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
*
Get access

Abstract

Large stores of unstable waste uranic materials such as fluorides or nitrates exist internationally due to legacy civil nuclear enrichment activities. Conversion of these uranic materials to layered metal uranates prior to disposal is possible via aqueous quench - precipitation type reactions. Previous studies1 have shown facile in-situ formation of geologically persistent and labile uranate colloids2 under simulated nuclear waste repository conditions, though the effects of local solution metal-uranium ratios on uranate stoichiometry have yet to be covered. This affects our understanding of how key radionuclides present in repository porewaters such as strontium or caesium may be sequestered in these uranate structures. In this work, we demonstrate a synthesis reaction for calcium monouranate particles via rapid anhydrous curing of a sol-gel. We present some results showing aqueous nucleation of uranate nanoparticles and their phase transformations during thermal curing as well as the effects of solution phase calcium loading on uranate phase purity in the cured particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moroni, L. P. and Glasser, F. P., Waste Manage 15 (3), 243254 (1995).Google Scholar
Bots, P., Morris, K., Hibberd, R., Law, G. T. W., Mosselmans, J. F. W., Brown, A. P., Doutch, J., Smith, A. J. and Shaw, S., Langmuir 30 (48), 1439614405 (2014).Google Scholar
Finch, R. J. and Ewing, R. C., Am Mineral 82 (5-6), 607619 (1997).CrossRefGoogle Scholar
Mace, N., Wieland, E., Dahn, R., Tits, J. and Scheinost, A. C., Radiochim Acta 101 (6), 379389 (2013).Google Scholar
Cordfunke, E. H. P. and Loopstra, B. O., Journal of Inorganic and Nuclear Chemistry 29 (1), 5157 (1967).CrossRefGoogle Scholar
Hoekstra, H. R. and Katz, J. J., J Am Chem Soc 74 (7), 16831690 (1952).CrossRefGoogle Scholar
Zachariasen, W. H., Acta Crystallographica 1 (1-6), 281285 (1948).CrossRefGoogle Scholar
Loopstra, B. O. and Rietveld, H. M., Acta Crystallographica Section B 25 (4), 787791 (1969).CrossRefGoogle Scholar
Rietveld, H., Acta Crystallographica 20 (4), 508513 (1966).Google Scholar
Gupta, A. K. and Gupta, M., Biomaterials 26 (18), 39954021 (2005).Google Scholar
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Muller, R. N., Chemical Reviews 108 (6), 20642110 (2008).Google Scholar
Janov, J., Alfredson, P. G. and Vilkaitis, V. K., Journal of Nuclear Materials 44 (2), 161174 (1972).Google Scholar
Reibold, R. A., Poco, J. F., Baumann, T. F., Simpson, R. L. and Satcher, J. H. Jr, Journal of Non-Crystalline Solids 319 (3), 241246 (2003).CrossRefGoogle Scholar
Ball, M. C., Birkett, C. R. G., Brown, D. S. and Jaycock, M. J., Journal of Inorganic and Nuclear Chemistry 36 (7), 15271529 (1974).Google Scholar
Griffiths, T. R. and Volkovich, V. A., Journal of Nuclear Materials 274 (3), 229251 (1999).Google Scholar
Tanford, C., Tichenor, R. L. and Young, H. A., J Am Chem Soc 73 (9), 44914492 (1951).Google Scholar
Giffaut, E., Grivé, M., Blanc, P., Vieillard, P., Colàs, E., Gailhanou, H., Gaboreau, S., Marty, N., Madé, B. and Duro, L., Appl Geochem 49, 225236 (2014).Google Scholar
Guillaumont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I. and Rand, M. H., Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. (Elsevier, Amsterdam, the Netherlands, 2003).Google Scholar
Meinrath, G., J Radioanal Nucl Ch 224 (1-2), 119126 (1997).Google Scholar
Sauerbrey, G., Zeitschrift für physik 155 (2), 206222 (1959).Google Scholar
Skakle, J., Moroni, L. and Glasser, F., Powder Diffraction 12 (02), 8186 (1997).Google Scholar
Wheeler, V. J., Dell, R. M. and Wait, E., Journal of Inorganic and Nuclear Chemistry 26 (11), 18291845 (1964).Google Scholar
Grenthe, I., Fuger, J., Konings, R. J., Lemire, R. J., Muller, A. B., Nguyen-Trung, C. and Wanner, H., Chemical thermodynamics of uranium. (Elsevier, Amsterdam, Netherlands, 1992).Google Scholar